

Last Update: August 2015

Thin@ Programmer’s Guide
V3.2

http://www.thinetsolution.com

 1

Introduction

Welcome to Thin@ Programmers Guide!

On the following pages you’ll first learn about the Thin@ template options, followed by a chapter
on Thin@ functions, methods and properties that the Thin@ template automatically adds to your
application.

After that, there is a long chapter listing all Thin@ methods and properties that you can manually
add to your application to perform specific tasks.

You’ll also find out how to add Thin@ to a 100% hand-coded application, how to tweak the Thin@
NetClient application and how to run a local Thin@ test environment.

http://www.thinetsolution.com

 2

Contents

I. List of unsupported standard Clarion features in this version (3.1) .. 3

II. Thin@ Template ... 4

II.1. Thin@ Global Extension options .. 4

II.1.1. General Tab .. 4

II.1.2. Visual appearance tab .. 6

II.2. Thin@ Procedure Extension options ... 7

II.3. Thin@ options for Controls .. 9

II.4. Thin@ code generated in special cases ... 12

II.5. Sample Clarion application with Thin@ support ... 13

III. Programming functions and methods ... 14

III.1. Clarion functions that are overridden by Thin@ version of BUILTINS.CLW 14

III.2. List of Thin@ Functions, Methods and Properties .. 16

III.2.1. List of Thin@ Functions .. 16

III.2.2. List of Thin@ Class Methods .. 18

III.2.3. List of Thin@ Functions and Methods related to ActiveX/OLE/OCX 19

III.2.4. List of Thin@ Class Properties .. 20

III.2.5. Description of Thin@ Functions, Class Methods and Properties 21

III.2.6. Adding support for OLE/OCX/ActiveX controls .. 68

III.2.7. Sample application with OCX ... 78

IV. Thin@ Class Properties .. 82

IV.1. General Thin@ class properties ... 82

IV.2. Thin@ user session properties... 85

V. Implementing Thin@ in a 100% hand-coded application ... 86

VI. Thin@ NetClient application tweaking .. 88

VI.1. Modifying the Thin@ Client GUI .. 89

VI.2. Thin@ Client global embed points ... 90

VI.3. Adding Multilanguage support to the Thin@ Client .. 92

VI.4. Tweaking compression and decompression routines ... 93

VI.5. Tweaking the print preview window & making support for custom/3rd party print
preview procedures ... 95

VII. Running a local test environment without installing the Thin@ server 98

VIII. Thin@ Addin (C7 + only) .. 100

IX. 3rd party products support for Thin@ .. 102

X. Known Server-Client version compatibility issues ... 103

http://www.thinetsolution.com

 3

I. List of unsupported standard Clarion features in this version (3.1)

1. Browse Grid (Browse is supported).

2. STD procedure calls (for example STD:Close). Use POST(Event:CloseWindow) instead.

3. Business rules.

4. Multiple reports opened at the same time.

Features that are not recommended:

 Date and time display on menu frames not recommended due to unnecessary Client-Server

communication

http://www.thinetsolution.com

 4

II. Thin@ Template

ThinNET is the name of the template shipped with Thin@ which adds Thin@-specific lines of code
to a Clarion application thus making it Thin@-ready.
Some Thin@ features can be customized by the Thin@ template options.

This chapter gives an overview of Thin@ template options and code that gets generated by the
template and also provides a sample Clarion application with added Thin@ support (that is
automatically generated by the template).

The chapter is divided in 5 parts:

 Thin@ Global Extension options

 Thin@ Procedure Extension options

 Thin@ options for Controls

 Thin@ Code generated in special cases

 Sample Clarion application with Thin@ support

II.1. Thin@ Global Extension options

Thin@ Global Extension options define Thin@ settings that affect the whole application.
These options are spread on two tabs: General Tab and Visual appearance Tab.

II.1.1. General Tab

a. Enable Thin@ - Enable/disable Thin@ application support

If checked, the template will generate Thin@-specific lines of code necessary to make an
application work as a Thin@ internet application. Although you won’t be using much of these
function calls in your application (except if you’re hand-coding your applications), it’s good to
know what the template does for you.

a1. Including the Thin@ library in your application

Generated at embed point ‘After global includes’:

a2. Declaring the Thin@ ThinNetMgr class

INCLUDE('ThinN@.INC')

http://www.thinetsolution.com

 5

Generated at embed point ‘Global data’:

a3. Starting Thin@ communication (*)

Generated at embed point ‘Program setup’:

See also ThinNetMgr.Start.

b. Enable Thin@ external dll support

Enable/disable support for Thin@ External Class.
The Thin@ External Class is used by certain Clarion 3rd Party Vendors to help them add Thin@
support Thin@ to their products.
Leave unchecked unless you know that the 3rd party product that you have in your application is
using this feature.

ThinNetMgr NetManager

! This will start the Thin@ library and wait for the client to respond.

 ThinNetMgr.Start()

http://www.thinetsolution.com

 6

II.1.2. Visual appearance tab

On this tab you can modify certain options that affect the visual appearance of your application.

a. SheetTab Style

This is the default style of a SHEET control (visible only in Thin@ Clients compiled in Clarion7 &
Clarion8).

Generated code:

See also RisNet:SetDefaultTabStyle.

b. Enable LIST box Header Colors

LIST box header color settings (visible only in Thin@ Clients compiled in Clarion7 & Clarion8)

Sample generated code:

See also RisNet:SetDefaultListboxHeaderColors.

RisNet:SetDefaultTabStyle(<TabStyleNumber>)

RisNet:SetDefaultListboxHeaderColors(1, -2,-2,-2,-2,-2,-2,-2,-2)

http://www.thinetsolution.com

 7

II.2. Thin@ Procedure Extension options

a. Enable Thin@

Enable/disable Thin@ for the selected procedure.
If checked, the template will generate Thin@-specific lines of code necessary to enable Thin@ on a
procedure level. Although you won’t be using much of these function calls in your application
(except if you’re hand-coding your applications), it’s good to know what the template does for
you.

a1. After opening or closing a window (*)

*Note: Although not required in most cases, ThinNetMgr.OpenWindow and
ThinNetMgr.CloseWindow are needed in complex multithreading situations in which Thin@ won’t
work properly without calling these methods.

a2. Taking application events

Generated at the end of every ACCEPT LOOP:

There is other code that is optionally generated if this option is checked, and it is covered in the
fourth section: Thin@ code generated in special cases.

IF ThinNetMgr.Active THEN ThinNetMgr.TakeEvent(<Window>).

IF ThinNetMgr.Active THEN ThinNetMgr.OpenWindow(<Window>).

IF ThinNetMgr.Active THEN ThinNetMgr.CloseWindow(<Window>).

http://www.thinetsolution.com

 8

b. Force window timers to refresh

If checked, timer events will cause the window to refresh.

Sample generated code:

See also ThinNetMgr.AddOption.

c. MDI Tab bar style

Defines whether the MDI tab bar will be turned on or off. If turned on, possible choices are Black
and White, Colored, Squared and Boxed.

Example application with MDI Tab Bar turned on:

Sample generated code:

See also ThinNetMgr.AddOption.

ThinNETMgr.AddOption(QuickWindow,0,'forcedtimerrefresh=1')

ThinNETMgr.AddOption(QuickWindow,0,'TabBarStyle=3')

http://www.thinetsolution.com

 9

II.3. Thin@ options for Controls

The Thin@ template also generates lines of code specific to a control type. Some of the control-
specific features are customizable through the Actions tab on the control properties.

a. Thin@ - ignore this Control

If checked, the control will not be visible in Thin@-mode.

Sample generated code:

See also ThinNetMgr.AddOption.

b. Thin@ synchronization options

Thin@ synchronization options exist on every Clarion control that can trigger EVENT:Accepted and
EVENT:Selected. By default, the Thin@ Client will communicate with the Thin@ Server on every
such event. However, it’s possible to disable this Thin@ Client-Server communication on
EVENT:Accepted and/or EVENT:Selected for a control. This optimization is not necessary, but it can
improve performance in certain cases. For example, it can result in quicker transitions from one
control to the other when holding down the tab key on a window.

Sample generated code:

See also ThinNetMgr.AddOption.

ThinNETMgr.AddOption(QuickWindow, ?Entry,'3')

ThinNETMgr.AddOption(QuickWindow, ?Listbox,'4')

http://www.thinetsolution.com

 10

c. Thin@ RTF control properties

RTF max size (default 250kB) - The maximum size of a RTF control (in bytes) in Thin@-mode.

Sample generated code:

See also ThinNetMgr.AddOption.

d. Thin@ textbox properties

RTF max size (default 32kB) - The maximum size of a RTF control (in bytes) in Thin@-mode.

Sample generated code:

See also ThinNetMgr.AddOption.

e. Sheet Tab Style

You can override the global tab style settings per control.

Sample generated code:

See also RisNet:SetTabStyle.

ThinNETMgr.AddOption(QuickWindow, ?RTFControl,'Size=250000')

ThinNETMgr.AddOption(QuickWindow, ?TextBox,'Size=250000')

RisNet:SetTabStyle(?QuickWindow, ?Sheet1, 1)

http://www.thinetsolution.com

 11

f. ListBox Header Colors

You can override the global LIST box header colors per control.

Sample generated code:

See also RisNet:SetListboxHeaderColors.

g. Correct incorrect parsing of pipe (|) character in LIST boxes

If the data in your LIST boxes contains pipe (|) characters, it’s possible that the data displayed in
the LIST box will be messed up. Check this option for every LIST box that manifests that problem.

Sample generated code:

See also ThinNetMgr.AddOption.

h. Noyantis ChartPro properties

If you’re using the Noyantis ChartPro ActiveX wrapper template with Thin@, it’s possible to
transfer images from the Thin@ Server to the Thin@ Client. In this way the OCX control does not
have to be registered on the Thin@ Client computer, but it has to be registered on the Thin@
Server computer.

RisNet:SetListboxHeaderColors(?QuickWindow,?Listbox,1,-2,-2,-2,-2,-2,-2,-2,-2)

ThinNETMgr.AddOption(QuickWindow, ?ListBox,'ParsePipe=1')

http://www.thinetsolution.com

 12

II.4. Thin@ code generated in special cases

In certain circumstances Thin@ automatically generates other code used to make the application
Thin@-ready. Instances of such code are covered in this section.

a. Making Thin@ aware of a LIST box

Automatically generated at WINDOW opening for each WINDOW that contains a LIST box:

See also ThinNetMgr.AddListControl.

b. Making Thin@ aware of Edit-In-Place

Automatically generated for every LIST box with a Edit-In-Place:

See also ThinNetMgr.AddListEIPControl.

c. Overriding the default timeout for reports

Automatically generated for every report:

See also ThinNetMgr.StartLongRunningProcess.

d. Downloading a report from the Server to the Client side

Sample code automatically generated for every report:

See also RisNet:DownloadFiles.

IF ThinNetMgr.Active THEN

 ThinNetMgr.AddListControl(<Window>,<LISTFeq>,<ListQueueSource>)

END !IF

 IF ThinNETMgr.Active THEN

 ThinNETMgr.AddListEIPControl(<?ListBox>,<?ListBox{PROP:column}>,0)

 END !IF

 IF ThinNetMgr.Active THEN

 ThinNetMgr.StartLongRunningProcess()

 END

IF ThinNetMgr.Active AND SELF.Response = RequestCompleted THEN

 ENDPAGE(SELF.Report)

 ThinNetMgr.EndLongRunningProcess()

 ThinNetMgr.DownloadFiles(SELF.PreviewQueue, SELF.PreviewQueue.FileName,

 'REPORT<-4->'& Report{PROP:Landscape} & '<-5->' & SELF.SkipPreview)

 FREE(SELF.PreviewQueue)

 Previewer.PrintOk = ThinNetMgr.Printed

END

http://www.thinetsolution.com

 13

II.5. Sample Clarion application with Thin@ support

This is a typical Clarion application with added Thin@ support. The lines of code which are
highlighted are required by Thin@ and are automatically generated by the Thin@ template.

PROGRAM

 MAP

Main PROCEDURE

 END

INCLUDE('ThinN@.inc')

ThinNetMgr NetManager

 CODE

 Main

Main PROCEDURE

ListQueue QUEUE

Field1 STRING(100)

Field2 STRING(100)

 END

MyWindow WINDOW('MyWindow'),SYSTEM,AT(,,225,123),FONT('MS Sans Serif', 8,,

FONT:regular),GRAY,Maximize

PROMPT('From Queue:'), AT(7,9), USE(?Prompt1)

LIST, AT(9,20,97,76), USE(?List1), FORMAT('20L(2)|M'), FROM(ListQueue)

BUTTON('Refresh'), AT(183,102,35,14), USE(?Button)

PROMPT('From String:'), AT(121,9), USE(?Prompt2)

 END

 CODE

 ThinNetMgr.Start()

 OPEN(MyWindow)

IF ThinNETMgr.Active THEN ThinNETMgr.OpenWindow(MyWindow).

 ListQueue.Field1='FirstQueueRow'; ADD(ListQueue)

 ListQueue.Field2='SecondQueueRow'; ADD(ListQueue)

IF ThinNetMgr.Active THEN

 ThinNetMgr.AddListControl(MyWindow, ?List1,ListQueue)

 END

 ACCEPT

 IF EVENT()=EVENT:Accepted AND FIELD()=?Button THEN

 MESSAGE('Hello Word!')

 END

 IF ThinNetMgr.Active THEN

 ThinNetMgr.TakeEvent(MyWindow)

 END

 END

CLOSE(MyWindow)

IF ThinNETMgr.Active THEN ThinNETMgr.CloseWindow(MyWindow).

http://www.thinetsolution.com

 14

III. Programming functions and methods

This chapter explores the Thin@ functions, methods and properties that you can use in your
applications.

The first section of this chapter covers Clarion functions that are replaced by the Thin@ version of
the BUILTINS.CLW file.

The second section covers specific situations in which you need to manually add Thin@ calls in
order to perform specific actions or make the application work as intended.

III.1. Clarion functions that are overridden by Thin@ version of BUILTINS.CLW

Thin@ ships with a modified version of the BUILTINS.CLW file in which some of the standard
Clarion functions are overridden by Thin@ equivalents.

For example, when you call a PRINTERDIALOG() function, the application will in fact execute
RisNet:PrinterDialog, which will call the PRINTERDIALOG on the client side.

You can still call the standard Clarion function (which will be executed on the server side), by
calling the function with the _OLD suffix. For example, PRINTERDIALOG_OLD.

This is a list of Clarion functions that are overridden by the Thin@ version of the BUILTINS.CLW
file:

Clarion
Function

Thin@ equivalent Description

START RisNet:START Begins a new execution thread.

MESSAGE RisNet:Message Displays a message dialog box and returns the button the user
pressed

MOUSEX RisNet:MouseX Return mouse horizontal position

MOUSEY RisNet:MouseY Return mouse vertical position

FILEDIALOG RisNet:FileDialog Displays Windows standard file choice dialogs to allow the user
to choose a file.
NOTE: when an application is run in the Thin@ mode FILEDIALOG

will show client-side files and folders.

FILEDIALOGA RisNet:FileDialogA Displays Windows standard file choice dialogs to allow the user
to choose a file.
NOTE: when an application is run in the Thin@ mode
FILEDIALOGA will show client-side files and folders.

COLORDIALOG RisNet:ColorDialog Displays the Windows standard color choice dialog box to allow
the user to choose a color.

FONTDIALOG RisNet:FontDialog Displays the standard Windows font choice dialog box to allow
the user to choose a font.

FONTDIALOGA RisNet:FontDialogA Displays the standard Windows font choice dialog box to allow
the user to choose a font and character set.

PRINTERDIALOG RisNet:PrinterDialog Displays the Windows standard printer choice dialog box to allow
the user to select or configure a printer.

http://www.thinetsolution.com

 15

NOTE: The standard STD:PrintSetup call cannot be used. Call the
PrinterDialog procedure instead.
To do it, write PrinterDialog in the ACCEPTED embed point of
your Print Setup item.

SELECT RisNet:Select Sets the next control to receive input focus.

POPUP RisNet:Popup Returns an integer indicating the user's choice from the menu.

DESTROY RisNet:Destroy Removes window controls.

PRESSKEY RisNet:PressKey Places one keystroke in the keyboard input buffer.

PRESS RisNet:Press Places characters in the keyboard input buffer.

HALT RisNet:Halt Immediately terminates the program.

DRAGID RisNet:DragID Returns matching host and target signatures on a successful
drag-and-drop operation.

http://www.thinetsolution.com

 16

III.2. List of Thin@ Functions, Methods and Properties

There are parts in your application which require a Thin@ function call, but the Thin@ template
does not generate it automatically (for example a file download/upload).

In those situations you need to manually add Thin@ specific calls in order to make the application
function as intended. Those will be covered in this section.

Note that this list does not include Thin@ functions that are automatically overridden by the
Thin@ version of BUILTINS.CLW (covered in section III.1), e.g. RisNet:START.

This chapter is divided in 4 parts:

 List of Thin@ Functions

 List of Thin@ Class Methods

 List of Thin@ Functions and Methods related to ActiveX/OLE/OCX

 List of Thin@ Class Properties

III.2.1. List of Thin@ Functions

RisNet:DownloadFile Downloads a single file from server side to client side.

RisNet:DownloadFiles Downloads multiple files from server side to client side
(Automatically generated by the Thin@ template for downloading
report files.)

RisNet:UploadFile Uploads a single file from client side to server side.

RisNet:CancelCloseWindow Cancels WINDOW termination, even after EVENT:CloseWindow is

processed.

RisNet:RunOnClient Runs an application on the client side.

RisNet:ShowProgressDialog Displays a progress dialog that is automatically refreshed every 3
seconds.

RisNet:GetClientPath Returns the PATH on the client.

RisNet:SetClientPath Sets the PATH on the client.

RisNet:Sleep Delays program execution for a specified time without using
processor time.

RisNet:GetWindowMaxState Returns 1 if the window is maximized, 0 if it’s not.

RisNet:SetWindowMaxState Setting this to 1 maximizes the window, 0 minimizes the window.

RisNet:SetDefaultListboxHeaderColors Sets a default header color for all LIST box headers in an
application.
(Automatically generated by the Thin@ template based on selected
global template options).

RisNet:SetListboxHeaderColors Sets header colors for a specific LIST box and overrides default
settings
(Automatically generated by the Thin@ template based on selected
control template options).

http://www.thinetsolution.com

 17

RisNet:SetDefaultTabStyle Sets a default tab style for application sheets
(Automatically generated by the Thin@ template based on selected
global template options).

RisNet:SetTabStyle Sets the tab style for a specific window
(Automatically generated by the Thin@ template based on selected
control template options).

RisNet:RunThinetApplication Runs a Thin@ application.

RisNet:GroupToXML Converts a Clarion GROUP to an XML structure which can be easily
transported between server and client.

RisNet:XMLToGroup Fills a Clarion GROUP structure from an XML previously created by
GroupToXML.

RisNet:QueueToXML Converts a Clarion QUEUE to an XML structure which can be easily
transported between server and client.

RisNet:XMLToQueue Fills a Clarion QUEUE structure from an XML previously created by
QueueToXML.

RisNet:Exec Runs a program (similar to Clarion RUN, but with more options).

RisNet:Exists Checks if a file exists on the Client side.

RisNet:SetTopWindow Brings a window on top of all other windows.

RisNet:ShellExecute Wrapper function for the Windows ShellExecute API function.

RisNet:SendMail Send an email using the default client-side email client
(Embedded into the default print preview procedure).

RisNet:ShowWindow Sets the specified window's SHOW state.
Wrapper for ShowWindow WinAPI function.

RisNet:CreatePDFfromWMF Creates an optimized PDF file from a WMF file.
(Embedded into the default print preview procedure).

RisNet:ScaleWindow Automatically resizes (to maximum visible area) and scales
(enlarges windows font) a window.
(Automatically generated by the Thin@ template based on selected
template options).

RisNet:DisableWindowScaling Globally disables window resizing and/or scaling.
(Automatically generated by the Thin@ template based on selected
template options).

Added in thin@ 3.1

RisNet:SetActiveThread Set’s current active thread.

RisNet:TabInsteadEnter Sets the status of tabInsteadEnter (numeric enter becomes tab)
client feature.

RisNet:ExpandComboBox Force expansion of a combo box.

RisNet:GetResolution Gets the client resolution in width,height form.

RisNet:PauseNewThreads Pauses new starting threads.

RisNet:SetClipboard Sets client side clipboard content.

RisNet:GetClipboard Gets the client side clipboard contents.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms633548(v=vs.85).aspx

http://www.thinetsolution.com

 18

III.2.2. List of Thin@ Class Methods

ThinNet Class Method Name Description

OpenWindow Required after Clarion OPEN(<Window>) statement.
(Automatically generated by the Thin@ template).

CloseWindow Required before Clarion CLOSE(<Window>) statement.
(Automatically generated by the Thin@ template).

StartLongRunningProcess Notifies Thin@ that a long running process (e.g. report) is about to
start and disables session timeout.
(Automatically generated by the Thin@ template for reports).

EndLongRunningProcess Notifies Thin@ that a long running process (e.g. report) is
completed.
(Automatically generated by the Thin@ template for reports).

TakeEvent Required by Thin@ at the bottom of every ACCEPT loop to take
window events.
(Automatically generated by the Thin@ template).

AddListControl
(QUEUE as the data source)

Required by Thin@ after every LIST box, COMBO box or DROP
down list declaration.
(Automatically generated by the Thin@ template).

AddListControl
(string expression as the data source)

Required by Thin@ after every LIST box, COMBO box or DROP
down list declaration.
 (Automatically generated by the Thin@ template).

SetClientPrinter Sets the default printer on the Client

ExecuteClientSource Executes a piece of code on the Client side.
(NOTE: To execute the appropriate code on the client, you need to
modify the Thin@ Client program (NetClient.app)).

Start Starts Thin@ communication
(Automatically generated by the Thin@ template).

DisplayThread Forces a WINDOW on another thread to refresh (e.g. after POSTing
an EVENT to it).

AddImageFolder Registers a custom subfolder (in the application directory on the
server) that contains application resources (images, icons,
executables etc.).

AddImageLibrary Registers a custom archive file (in the application directory on the
server) that contains application resources (images, icons,
executables etc.). The file can be password protected to protect
intellectual property.

Display Forces immediate window refresh.

AddListEIPControl This function is used to inform Thin@ that the PROP:EDIT property
of a LIST box changed value.
Note that the Thin@ template automatically generates this
function call.
(Automatically generated by the Thin@ template).

http://www.thinetsolution.com

 19

AddOption This function can be used to assign various Thin@ options to
WINDOW and CONTROL objects.

DisplayControlImage This function is used to force image refresh of an image file that
was modified during runtime.

AddRtfControl This function is used to inform Thin@ that a WINDOW contains an
RTF Control.
(Automatically generated by the Thin@ template).

AddFileToDownloadList

This function can be used to add a file to the Thin@ download list.

AfterCreatingWindow VIRTUAL function; derivable.
Called on the Client each time a WINDOW is opened.

BeforePaintingControl VIRTUAL function; derivable.
Called before a CONTROL is drawn on the Client side.

AfterPaintingControl VIRTUAL function; derivable.
Called after a CONTROL is drawn on the Client side.

GetControlOption This function can be used to return Client-side CONTROL properties
from the Thin@ library.

TakeClientEvent VIRTUAL function; derivable.
Called for each event generated inside an ACCEPT loop.

III.2.3. List of Thin@ Functions and Methods related to ActiveX/OLE/OCX

Thin@ Function/Method Name Description

ThinNetMgr.AddOCXControl Used in a Thin@ application instead of the PROP:Create statement.

RisNet:SetOCXProperty Sets a property of an OCX/OLE control.

RisNet:GetOCXProperty Gets a property of an OCX/OLE control.

See also
RisNet:OCXRegisterEventProc
RisNet:OCXGetLastEventName
RisNet:OCXGetParamCount
RisNet:OCXGetParam

RisNet:OCXRegisterEventProc Registers an OCX event callback procedure for the control.

RisNet:OCXGetLastEventName Gets the name of the last event sent to an OCX control.

RisNet:OCXGetParamCount Returns the number of parameters associated with the current
OCX event.

RisNet:OCXGetParam This function returns the value a parameter associated with the
current OCX event.

RisNet:OCXRegister Registers the specified OCX control with the client-side OS.

RisNet:OCXBind This function binds an OCX variable so that it can be used in
dynamic expressions with Thin@ OCX functions.

RisNet:OCXAddSkipEvent This function is used to add an OCX event to the Thin@ OCX Event

http://www.thinetsolution.com

 20

Ignore List in order to improve performance.

III.2.4. List of Thin@ Class Properties

Thin@ Class Property Name Description

Active Returns 1 if the application is running in Thin@ mode, 0 if not.

ClientPrinter Default printer on the client side.

State State of the Thin@ Server.

CurrentThread Thin@ current thread. It can be different from THREAD().

ThreadBusy Thread number that is currently communicating with the Client.

ClientPath Default temporary folder on the Client side.

FilePath Default temporary folder on the Server side.

FileDirPath Default temporary folder created on the Server for storing files of
each Thin@ user.

Stats Thin@ user session properties.

http://www.thinetsolution.com

 21

III.2.5. Description of Thin@ Functions, Class Methods and Properties

Each Thin@ function, class method and property listed above is described in detail in this section.

1. Downloading a single file

This function downloads a single file from Server side to Client side.

Prototype

Parameters

Name Description

FileName Full path name on the application server.

<Sign> You can modify the behavior of the function by using one of these
predefined values:
RisNet:FileDialog - force the Client to open the file dialog and prompt for
a download destination.
RisNet:NoDirCreate - don’t create a directory.
RisNet:DirCreate – create a directory.
RisNet:AskDirCreate – ask whether to create a directory.

<FilePath> Default download path on the Client side.
If omitted, the files are stored in the default temporary folder on the
client side, accessible by the ThinNetMgr.ClientPath variable

<TargetName> You can optionally set a new filename for the downloaded file.

<ChangeCheck> If 1, Thin@ will check if there is already a file on the Client with the same
name, and if there is, compare it with the file which is preparing for
download. The file will be downloaded only if there is a difference
between the two.
Default is 0.

<ClientDirChoice> The folder on the Client machine selected by the user.

Return value: STRING

If the function succeeds, it returns 0.
If the function fails because the FilePath does not exists and RisNet:DirCreate is not used (or
RisNet:AskDirCreate is used and the user picked not to create the directory), the return value is 3.
If the function fails for some other reason, it is a 7z error code. For a list of 7z error codes see
http://sevenzip.sourceforge.jp/chm/cmdline/exit_codes.htm.

Usage notes

ThinNetMgr.FileDirPath is the default temporary directory created for storing files of each user on

the server side. See RisNet:UploadFile.

RisNet:DownloadFile PROCEDURE(STRING FileName,<STRING Sign>,<STRING

FilePath>,<STRING TargetName>,<*? ChangeCheck>,<*?

ClientDirChoice>),STRING,PROC

http://sevenzip.sourceforge.jp/chm/cmdline/exit_codes.htm

http://www.thinetsolution.com

 22

Example

The following command will download the file Filename” (which is located in the user’s temporary

folder on the server) to C:\ on the client. The command will prompt for a download destination.

See also

RisNet:DownloadFiles

RisNet:UploadFile

ThinNetMgr.ClientPath

ThinNetMgr.FileDirPath

RisNet:DownloadFile(ThinNetMgr.FileDirPath & Filename”,'File<-4->1','C:\')

http://www.thinetsolution.com

 23

2. Downloading multiple files

This function downloads multiple files from Server side to Client side.

Prototype

Parameters

Name Description

SourceQueue The queue name containing multiple files.

Sign See DownloadFile.

<FilePath> Default download path on the Client side.
If omitted, the files are stored in the default temporary folder on the client
side, accessible by the ThinNetMgr.ClientPath variable.

<ClientDirChoice> The folder on the Client machine selected by the user.

Return value: STRING

See RisNet:DownloadFile

Usage notes

Both RisNet:DownloadFile and RisNet:DownloadFiles will compress the files before downloading

them to the Client machine.

See also

RisNet:DownloadFile

RisNet:UploadFile

ThinNetMgr.ClientPath

ThinNetMgr.FileDirPath

RisNet:DownloadFiles PROCEDURE(*QUEUE SourceQueue,*? FileName,STRING

Sign,<STRING FilePath>,<*? ClientDirChoice>),STRING

http://www.thinetsolution.com

 24

3. Uploading files

This function uploads a single file from Client to Server side.

Prototype

Parameters

Name Description

SourceQueue The queue name containing multiple files.

Sign See DownloadFile.

FilePath The upload path on the Server side.
If not supplied the Server will store the uploaded file to a temporary created
storage that can be accessed through the ThinNetMgr.FileDirPath variable.

Usage notes

The temporary user directory created by Thin@ and stored in the ThinNetMgr.FileDirPath variable

is not automatically deleted so it’s suggested to use the REMOVE command on all the uploaded

files and REMOVE(ThinNetMgr.FileDirPath) for removing the temporary directory).

Example

See also

RisNet:DownloadFile

RisNet:DownloadFiles

ThinNetMgr.ClientPath

ThinNetMgr.FileDirPath

RisNet:UploadFile(Filename”, ‘C:\’)

RisNet:UploadFile PROCEDURE(STRING FileName,<STRING FilePath>)

http://www.thinetsolution.com

 25

4. Canceling WINDOW close

This function cancels WINDOW termination, even after EVENT:CloseWindow is processed.

Prototype

Usage notes

Sometimes in programming there is a need to cancel WINDOW termination even after

EVENT:CloseWindow is processed. In a standard Client / Server environment it is done by simply

calling the CYCLE() function before accept termination. However, in the Thin@ environment you

need to call this function before calling CYCLE().

Example

ThisWindow.InsertAction PROCEDURE

ReturnValue BYTE,AUTO

 CODE

 ReturnValue = PARENT.InsertAction()

 ! Thin@ support

 IF ThinNetMgr.Active THEN

 IF ~ReturnValue = Level:Benign THEN RisNet:CancelCloseWindow().

 END

 RETURN ReturnValue

RisNet:CancelCloseWindow PROCEDURE()

http://www.thinetsolution.com

 26

5. Running programs on the Client side

This function executes a program on the Client side.

The Thin@ Client ships with a program START.EXE which can be used to start various applications

without providing its full path or to open documents by the default program associated with it.

Alternatively, you can use RisNet:ShellExecute.

Prototype

Parameters

Name Description

ExecuteString Execute expression.

WaitFlag If set to 1, waits for an instruction to end.

Default is 0.

<ShowFlag> If set to 1, shows the activated process.
Default is 0.

Return value: LONG

If the function succeeds it will return a value which depends on the program from which it was

called. For more info about read the following article: http://msdn.microsoft.com/en-

us/library/ms683189(v=vs.85).aspx

If the function fails it will return one of the system error codes. For more info about system error

codes read the following article: http://msdn.microsoft.com/en-

us/library/ms681382(v=vs.85).aspx

Example

See also

RisNet:ShellExecute

ThinNetMgr.ExecuteClientSource

RisNet:RunThinetApplication

RisNet:RunOnClient PROCEDURE(? ExecuteString,? WaitFlag,<?

ShowFlag>),LONG,PROC

RisNet:RunOnClient('cmd /c START winword') ! Open a document in word

RisNet:RunOnClient('cmd /c START http://thinetsolution.com') ! Open a webpage

RisNet:RunOnClient('c:\Script.bat') ! Run a batch script

http://msdn.microsoft.com/en-us/library/ms683189(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms683189(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms681382(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms681382(v=vs.85).aspx
http://thinetsolution.com/

http://www.thinetsolution.com

 27

6. Showing progress dialog window

This function shows a progress dialog window containing a progress bar that is automatically
populated and refreshed every 3 seconds.

Prototype

Parameters

Name Description

pDone Percentage of job done (e.g. 10).

pTotal Total job percentage (e.g. 100).

pCancel A value of 1 will show a Cancel button on the window. Default is 0.

<pTitle> Window title

<pFormatExpression> Clarion picture @n15

Return value: BYTE
The procedure returns 1 if the process is completed and 0 if it’s not completed.

Usage notes
Remember to add this line of code after the loop in case that the Window is closed before the
progress bar reaches 100%:

Example

LOOP

 Processed# += 1

 RisNet:ShowProgressDialog(Processed#,Total#,1,'Processing movies..')

END

IF RisNet:ShowProgressDialog(Processed#,Total#,1,'Processing movies..')=1

THEN BREAK.

RisNet:ShowProgressDialog PROCEDURE(? pDone,? pTotal,BYTE pCancel=0,<?

pTitle>,<? pFormatExpression>),BYTE

IF RisNet:ShowProgressDialog(Processed#,Total#,1,'Processing movies..')=1

THEN BREAK.

http://www.thinetsolution.com

 28

7. Getting the Client folder path

This function returns the current folder path on the Client computer.

Prototype

Return value: STRING
The function returns the current folder path on the client side computer.

See also

RisNet:SetClientPath

8. Setting the Client folder path

The function sets the current folder path on the Client side computer.

Prototype

Parameters

Name Description

PathExpression Folder path

Return value: STRING
If the function succeeds, it returns 0.
If the function fails, it will return the error code 03 – Path not found.

Example

See also

RisNet:GetClientPath

RisNet:SetClientPath PROCEDURE(STRING PathExpression),STRING

RisNet:GetClientPath PROCEDURE(),STRING

RisNet:SetClientPath('C:\')

http://www.thinetsolution.com

 29

9. Delaying the application without using processor time

This function delays a thread on the Server for a number of milliseconds. It does not use processor
time, as would delaying the application using a LOOP.

Prototype

Parameters

Name Description

Timeout Time in miliseconds by which the application execution is delayed.

Usage notes
This function wraps the SLEEP Win API function.

Example

RisNet:Sleep PROCEDURE(ULONG Timeout)

RisNet:Sleep(1000)

http://msdn.microsoft.com/en-us/library/windows/desktop/ms686298(v=vs.85).aspx

http://www.thinetsolution.com

 30

10. Getting maximized state of a window

Use this function to find out if a window is maximized or not (on the Client side).

Prototype

Parameters

Name Description

WindowHandle The name of the Window object.

Return value
Returns 1 if the window is maximized and 0 if the window is not maximized.

Usage notes
Window maximization works different in Thin@-mode than in a standard Clarion application. In a
standard Clarion application, when you press the maximize button on a window (or set
PROP:MAXIMIZE attribute to 1), the window maximizes to its maximum size determined by OS
resolution.

On the other hand, when an application runs in Thin@-mode and a user maximizes the window,
that window is resized on the server to the maximum size determined by her local OS resolution.
The application that is running on the server will never be maximized.

Therefore, you can’t use the PROP:MAXIMIZE attribute of a window to find out if a window is
maximized or to maximize a window.

In Thin@, to find out if a window is maximized you should use RisNet:GetWindowMaxState, and to
set window size to maximized, you should use RisNet:SetWindowMaxState.

Example

See also

RisNet:SetWindowMaxState

RisNet:GetWindowMaxState PROCEDURE(*WINDOW WindowHandle),BYTE

RisNet:GetWindowMaxState(QuickWindow)

http://www.thinetsolution.com

 31

11. Maximizing a window

Use this function to maximize a window.

Prototype

Parameters

Name Description

WindowHandle Name of the Window object.

MaxState 1 = maximize; 0 = normal

Example

See also

RisNet:GetWindowMaxState

!Check if a window is maximized and maximize it if it's not

IF ThinNetMgr.Active THEN

IF ~RisNet:GetWindowMaxState(MainWin) THEN

RisNet:SetWindowMaxState(MainWin, 1).

ELSE

 IF MainWin{prop:max}=0 THEN MainWin{prop:max} = 1.

END

RisNet:SetWindowMaxState PROCEDURE(*WINDOW WindowHandle, BYTE MaxState)

http://www.thinetsolution.com

 32

12. Setting a default header color for application LIST box headers

This function is used to set a default header color for all LIST box headers in an application.

Prototype

Parameters

Name Description

Enabled Enable(1) or disable(0) ListBox Header Colors. Default value is 1.

cListHeaderBack Header background color. Default value is -2.

cListHeaderFore Header foreground (text) color. Default value is -2.

cListHeaderGRBack Header group background color. Default value is -2.

cListHeaderGrFore Header group foreground (text) color. Default value is -2.

cListHeaderArrow Header (sort) arrow color. Default value is -2.

cListHeaderArrow3D Header (sort) 3D arrow color. Default value is -2.

Usage notes
This property is configurable as a Thin@ template option.

See also

RisNet:SetListboxHeaderColors

RisNet:SetDefaultListboxHeaderColors PROCEDURE(BYTE Enabled=1, LONG cNormal =

-2, LONG cAccentTxt = -2, LONG cListHeaderBack = -2, LONG cListHeaderFore = -

2, LONG cListHeaderGRBack = -2, LONG cListHeaderGrFore = -2, LONG

cListHeaderArrow = -2, LONG cListHeaderArrow3D = -2)

http://www.thinetsolution.com

 33

13. Setting header color for a LIST box header

This function enables you to set LIST box header colors for a specific LIST box and overrides default
settings.

Prototype

Parameters

Name Description

WindowHandle Name of the window object.

Feq FEQ of the LIST box control.

Enabled Enable(1) or disable(0) LIST box Header Colors. Default value is 1.

cListHeaderBack Header background color. Default value is -2.

cListHeaderFore Header foreground (text) color. Default value is -2.

cListHeaderGRBack Header group background color. Default value is -2.

cListHeaderGrFore Header group foreground (text) color. Default value is -2.

cListHeaderArrow Header (sort) arrow color. Default value is -2.

cListHeaderArrow3D Header (sort) 3D arrow color. Default value is -2.

Usage notes
This property is configurable as a Thin@ template option.

See also

RisNet:SetDefaultListboxHeaderColors

RisNet:SetListboxHeaderColors PROCEDURE(*Window WindowHandle, LONG Feq, SHORT

Enabled=1, LONG cNormal = -2, LONG cAccentTxt = -2, LONG cListHeaderBack = -

2, LONG cListHeaderFore = -2, LONG cListHeaderGRBack = -2, LONG

cListHeaderGrFore = -2,LONG cListHeaderArrow = -2,LONG cListHeaderArrow3D=-2)

http://www.thinetsolution.com

 34

14. Setting a default tab style for SHEET controls

This function sets a default tab style for application sheets.

Property

Parameters

Name Description

pTabStyle A numeric value indicating the style of the tab.
Tab style EQUATES:

TabStyle:Default EQUATE(0)
TabStyle:BlackAndWhite EQUATE(1)
TabStyle:Colored EQUATE(2)
TabStyle:Boxed EQUATE(3)

Usage notes
In Thin@ it is possible to use the Clarion 7/8 tab style feature even in a Clarion 6 application. The
Thin@ client needs to be compiled at least in Clarion 7.
This property is configurable as a Thin@ template option.

See also

RisNet:SetTabStyle

RisNet:SetDefaultTabStyle PROCEDURE(BYTE pTabStyle = 1)

http://www.thinetsolution.com

 35

15. Setting a tab style for a specific SHEET control

This function enables you to set the tab style a specific sheet control and override the default
settings.

Prototype

Parameters

Name Description

Window Name of the window object.

FEQ FEQ of the sheet control.

pTabStyle Numeric value indicating the style of the tab.

Usage notes
This property is configurable as a Thin@ template option.

See also

RisNet:SetDefaultTabStyle

16. Starting a Thin@ application programmatically

This function starts another Thin@ applications from an already running Thin@ application
instance.
The application you wish to run must be registered in the Thin@ Main Application Server
database. The application will run with the default user credentials.

Prototype

Parameters

Name Description

ApplicationName Name of the Thin@ application registered in a Thin@ server that you
wish to run

RisNet:SetTabStyle PROCEDURE(*Window WindowHandle,LONG Feq,BYTE pTabStyle=1)

RisNet:RunThinetApplication PROCEDURE(STRING ApplicationName)

http://www.thinetsolution.com

 36

Moving Clarion GROUPs and QUEUEs between client and server

17. Transforming a Clarion GROUP to an XML structure

Prototype

Parameters

Name Description

pGroup Name of a GROUP structure.

Return value: STRING
The function returns a delimited STRING.

See also

RisNet:XMLToGroup
RisNet:QueueToXML
RisNet:XMLToQueue

18. Transforming a properly formatted XML structure to a Clarion GROUP

Prototype

Parameters

Name Description

pString A properly formatted XML structure (return value from the
RisNet:GroupToXML function)

pGroup Name of a GROUP structure which you wish to populate.

<pIgnoreString> Name of a variable in a GROUP structure that will be ignored. If you
want to ignore multiple variables, separate them with a comma or
white space.

Return value: BYTE
Returns 0 if the input string is not properly formatted.
Returns 2 if there is a record in the XML which does not match any GROUP variable by name.
Returns 1 if there is no error.

See also

RisNet:GroupToXML
RisNet:QueueToXML
RisNet:XMLToQueue

RisNet:GroupToXML PROCEDURE(*GROUP pGroup),STRING

RisNet:XMLToGroup PROCEDURE(STRING pString, *GROUP pGroup, <STRING

pIgnoreString>),BYTE

http://www.thinetsolution.com

 37

19. Transforming a Clarion QUEUE to an XML structure

Prototype

Parameters

Name Description

pQueue Name of a QUEUE structure.

Return value: STRING
The function returns a delimited STRING.

See also

RisNet:GroupToXML
RisNet:XMLToGroup
RisNet:XMLToQueue

RisNet:QueueToXML PROCEDURE(*QUEUE pQueue),STRING

http://www.thinetsolution.com

 38

20. Transforming a properly formatted XML structure to a Clarion QUEUE

Prototype

Parameters

Name Description

pString A properly formatted XML structure (return value from the
RisNet:QueueToXML function)

pQueue Name of a GROUP structure which you wish to populate.

Return value: BYTE
Returns 0 if the input string is not properly formatted.
Returns 2 if there is a record in the XML which does not match any QUEUE variable by name.
Returns 1 if there is no error.

Example
In the following example we use the RisNet:GroupToXML and RisNet:XMLToGroup functions to
move data between Server and Client.
Suppose that you want to populate a Browse Queue with a list of client-side printers.

To do so, you would need to modify the NetClient.app (see ThinNetMgr.ExecuteClientSource). In
the appropriate section of the NetClient.app you could use the following code:

In your application you could use the following code:

The ClientPrintersQ should now contain a list of Client-side printers.

See also

RisNet:GroupToXML
RisNet:XMLToGroup
RisNet:QueueToXML

RisNet:XMLToQueue PROCEDURE(STRING pString, *QUEUE pQueue),BYTE

ClientPrintersQ QUEUE

PrinterQXML CSTRING(255)

CODE

IF ThinNetMgr.Active THEN

PrinterQXML = ThinNetMgr.ExecuteClientSource(‘GetPrinterQ')

END !IF

RisNet:XMLToQueue(PrinterQXML, ClientPrintersQ)

IF Var1=’GetPrinterQ' THEN

! Write your own code here to get a list of client printers, put them in a

Queue, e.g. PrintersQ

RETURN RisNet:QueueToXML(PrintersQ) !This will pass the printer queue back to

the server-side app

END

http://www.thinetsolution.com

 39

21. Executing a program from your application

This function can be used to execute programs from your application. Programs are executed on
the server side. This function is similar to the standard Clarion RUN function, but it offers more
options. It uses the CreateProcess API function.

Prototype

Parameters

Name Description

pCommand Command to be executed.

Wait If set to 1, the function will wait for the process to finish before
continuing. Default is 0.

Show If set to 1, the function will display the content of the command line
window. Default is 1.

Timeout If the Wait flag is set to 1, this parameter will determine how much
time (in milliseconds) is the command going to wait for the process to
finish before timing out.
The default value of 0 means that it will wait indefinitely.

<pWindowStation> Win OS WindowStation in which the program is started. Default is the
current WindowStation.

<pDesktop> Win OS Desktop in which the program is started. Default is the current
Desktop.

<pCurrentDirectory> The “Start In” folder in which the program is going to be executed.

<Priority> The OS priority which will be given to the executing process. Default is
2 (Normal). Possible values are:

0 default (normal)
1 Idle (lowest)
2 Normal
3 High
4 Real time (highest)

Return value: LONG
If the function succeeds, the return value is zero.
If the function fails, the return Error Code is non-zero and is return by the CreateProcess API
function.

RisNet:Exec PROCEDURE(STRING pCommand,LONG Wait=0, LONG Show=1, LONG

Timeout=0, <STRING pWindowStation>, <STRING pDesktop>, <STRING

pCurrentDirectory>),LONG

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx

http://www.thinetsolution.com

 40

22. Checking if a file exists on the Client side

This function can be used to check if a file exists on the Client side. Note that you can’t use the
Clarion EXISTS() function because it checks the existence of the file on the Server side.

Prototype

Parameters

Name Description

PathExpression Full path to the file.

Return value: LONG
If the file exists, the return value is 1.
If the file does not exist, the return value is 0.

23. Bringing a window on top of other windows on the Client side

This function can be used to bring a window on top of other windows on the Client side. It uses
the BringWindowToTop API function.

Prototype

Parameters

Name Description

WindowCaption Caption of the window.

Return value: ULONG
If the function succeeds, the return value is 0.
If the function fails, the return Error Code is non-zero and is returned by the BringWindowToTop
API function.

See also
RisNet:ShowWindow

RisNet:Exists PROCEDURE(STRING PathExpression),LONG

RisNet:SetTopWindow PROCEDURE(STRING WindowCaption),ULONG

http://msdn.microsoft.com/en-us/library/windows/desktop/ms632673(v=vs.85).aspx

http://www.thinetsolution.com

 41

24. Executing/opening files on the Client (with the default associated application)

This is a wrapper function for the ShellExecute Windows API function and can be used to run/open
any file on the Client using the default application associated to it.

Prototype

Parameters

Please refer to http://msdn.microsoft.com/en-
us/library/windows/desktop/bb762153(v=vs.85).aspx for details on input parameters and return
values.

See also
RisNet:RunOnClient

25. Sending emails from your application

This function can be used to send emails from the application using the default mailing client. It
can send the email both from the Server and from the Client computer.

Prototype

Parameters

Name Description

SendTo Email Recipient.

Subject Email subject.

MessageText Email message text.

Attachment Email file attachment.

pSend If set to 1, sends the email immediately.
If set to 0, opens the default email client.
Default value is 0.

SendFromServer If set to 1, sends the email from the Server side.
If set to 0, sends the email from the Client side.
Default value is 0.

Return value: LONG
If the function succeeds, it returns 0.
If the function fails, it return a Win API GetLastError (for more info see
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679360(v=vs.85).aspx)

Example

RisNet:ShellExecute PROCEDURE(ULONG HWND, STRING pOperation, STRING pFile,

STRING pParameters, STRING pDirectory, ULONG pShowCmd),ULONG

RisNet:SendMail PROCEDURE(STRING SendTo, STRING Subject, STRING MessageText,

STRING Attachment, BYTE pSend = 0, BYTE SendFromServer = 0),PROC,LONG

http://msdn.microsoft.com/en-us/library/windows/desktop/bb762153(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb762153(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb762153(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679360(v=vs.85).aspx

http://www.thinetsolution.com

 42

26. Setting the SHOW state of a specified window

This is a wrapper function for the ShowWindow WinAPI function and can be used to set the show
state of a specified window.

Prototype

Parameters

Please refer to http://msdn.microsoft.com/en-
us/library/windows/desktop/ms633548(v=vs.85).aspx for details on input parameters and return
values.

See also
RisNet:SetTopWindow

27. Creating an optimized PDF file from a WMF file

This function creates an optimized PDF file from a WMF file.

Prototype

Parameters

Name Description

vSourceQueue

vFileName

PdfFileName

Example
In this example we call the CreatePDFFromWMF function in the Before Print Preview legacy embed
instead of calling the default print preview procedure. Therefore, the report will not go to the
print preview but it will be converted to a PDF file called OutputPDF.PDF under C:\.

RisNet:SendMail('user@domain.com','MessageSubject','Hello','Report.PDF')

RisNet:ShowWindow PROCEDURE(ULONG HWND, ULONG ShowCmd),BYTE,PROC

RisNet:CreatePDFfromWMF PROCEDURE(*QUEUE vSourceQueue, *? vFileName, STRING

PdfFileName)

IF ThinNetMgr.Active AND SELF.Response = RequestCompleted THEN

 ENDPAGE(SELF.Report)

 ThinNetMgr.EndLongRunningProcess()

 ThinNetMgr.CreatePDFFromWMF(SELF.PreviewQueue,

SELF.PreviewQueue.FileName,'C:\OutputPDF.PDF')

 FREE(SELF.PreviewQueue)

END

http://msdn.microsoft.com/en-us/library/windows/desktop/ms633548(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms633548(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms633548(v=vs.85).aspx

http://www.thinetsolution.com

 43

28. Resizing and/or scaling a window

This function is used to resize and/or scale a window.
Resizing a window in this case means increasing the WIDTH and HEIGHT properties of a window in
order to fill the visible area inside the application frame.
Scaling a window in this case means increasing window font in order to better use higher
resolutions.

Prototype

Parameters

Name Description

WindowName Name of the WINDOW object.

ScaleWindow If set to 1, the function will scale the window.
Default is 1.

MaxWidth If set to 1, the function will resize the window to maximum width.
Default is 0.

MaxHeight If set to 1, the function will resize the window to maximum height.
Default is 0.

MarginX If nonzero, the function will resize the window using a fixed left margin.
Default is 0.

MarginY If nonzero, the function will resize the window using a fixed upper
margin.
Default is 0.

Example

See also
RisNet:DisableWindowScaling

RisNet:ScaleWindow PROCEDURE(*WINDOW WindowName, BYTE ScaleWindow=1, BYTE

MaxWidth=0, BYTE MaxHeight=0, LONG MarginX=0, LONG MarginY=0)

RisNet:ScaleWindow(QuickWindow, 1, 1, 1, 0, 0)

http://www.thinetsolution.com

 44

29. Disabling window scaling

This function can be used to globally disable window resizing and/or scaling.

Prototype

Parameters

Name Description

DisableWindowScaling If set to 1, window scaling will be globally disabled.
Default is 0.

DisableWindowResizing If set to 1, window resizing will be globally disabled.
Default is 0.

See also
RisNet:ScaleWindow

30. Setting currently active thread

This function is used to set current active thread. The call to this function will activate the top
window in used thread on the client side.

Prototype

Parameters

Name Description

ThreadNo Thread id

WaitCallingThread If set to true, the switch to new thread will happen only after calling
thread has finished all the processing and there is no pending events.
Default is true.

PostEvent If set to true, the switch to new thread will post additional event to the
switching thread forcing the thread’s ACCEPT loop to accepts the
transition. Set this to false in case that switching thread does not
contain active ACCEPT loop.
Default is true.

See also
ThinNetMgr.DisplayThread

RisNet:DisableWindowScaling PROCEDURE(BYTE DisableWindowScaling=0, BYTE

DisableWindowResizing=0)

RisNet:SetActiveThread PROCEDURE(LONG ThreadNo, BYTE WaitCallingThread =

True, BYTE PostEvent = True)

http://www.thinetsolution.com

 45

31. Setting TabInsteadEnter client side option

This function is used to set current behavior of client TabInsteadEnter option.

Prototype

Parameters

Name Description

Param 0 - sets parameter inactive
1 - sets parameter inactive

32. Expanding a combo box

This function is used to force expansion of a ComboBox control.

Prototype

Parameters

Name Description

Feq Feq of the ComboBox control

Clear If set to true, it will clear previous expansion requests for this control in
this unfinished refresh cycle.
Default is false.

33. Fetching client resolution

This function is used to fetch client side desktop resolution.

Prototype

Parameters

Name Description

xRes Variable that will receive horizontal resolution of the client desktop.

yRes Variable that will receive vertical resolution of the client desktop.

RisNet:TabInsteadEnter PROCEDURE(BYTE Param = 1)

RisNet:ExpandComboBox PROCEDURE(LONG Feq, BYTE Clear = False)

RisNet:GetResolution PROCEDURE(*? xRes, *? yRes)

http://www.thinetsolution.com

 46

34. Pause new thread

This function is used to pause new starting threads while in thin@ mode. This is useful in scenario
where you are doing complex screen drawing and have a need to refresh that temporary data to
the client side but you don't want to be distracted with possible new threads and their opening
windows.

Prototype

Parameters

Name Description

MaxThread Contains current maximum thread that is not paused. Any thread that
has higher id the MaxThread value will be paused.

See also
ThinNetMgr.DisplayThread

35. Setting a client side clipboard

This function is used to set a clipboard content on the client side.

Prototype

Parameters

Name Description

Expression Contains clipboard expression.

See also
RisNet:GetClipboard

RisNet:PauseNewThreads PROCEDURE(LONG MaxThread)

RisNet:SetClipboard PROCEDURE(STRING Expression)

http://www.thinetsolution.com

 47

36. Getting a client side clipboard

This function is used to get a clipboard content on the client side.

Prototype

Return value: STRING
The return value contains client side clipboard content.

See also
RisNet:SetClipboard

37. Informing Thin@ that a WINDOW opened

This function should be used after each OPEN(<Window>) statement to inform Thin@ that a
WINDOW opened. It is automatically generated by the Thin@ template.

Prototype

Parameters

Name Description

Wind Name of the WINDOW object.

Usage notes

Using this function after a WINDOW opened is usually not required, but its use is strongly

recommended. The application will not work properly in certain multithreading scenarios if this

function is not called.

Example

See also

ThinNetMgr.CloseWindow

OPEN(<Window>)

IF ThinNetMgr.Active THEN ThinNetMgr.OpenWindow(<Window>).

OpenWindow PROCEDURE(*WINDOW Wind)

RisNet:GetClipboard PROCEDURE,STRING

http://www.thinetsolution.com

 48

http://www.thinetsolution.com

 49

38. Informing Thin@ that a WINDOW closed

This function should be used before each CLOSE(<Window>) statement to inform Thin@ that a
WINDOW opened. It is automatically generated by the Thin@ template.

Prototype

Parameters

Name Description

Wind Name of the WINDOW object.

Usage notes

Using this function before a WINDOW opened is usually not required, but its use is strongly

recommended. The application will not work properly in certain multithreading scenarios if this

function is not called.

Example

See also

ThinNetMgr.OpenWindow

IF ThinNetMgr.Active THEN ThinNetMgr.CloseWindow(<Window>).

CLOSE(<Window>)

CloseWindow PROCEDURE(*WINDOW Wind)

http://www.thinetsolution.com

 50

39. Informing Thin@ that a long running Server job is about to start

Use this function when you want to inform Thin@ that a long-running Server job (such as a long-

running report) is about to start, and you expect that its execution is going to last more than 40

seconds.

Note that the Thin@ template automatically generates this function for reports.

Prototype

Usage notes

After each action by the application user, the Client sends the request to the Server, which starts

to process it. If the Server is unresponsive for longer than 40 seconds (due to a long running

process), the Client will break the connection with the Server and the reconnect window will

appear.

The Client will reconnect to the Server-side application eventually but only after the long running

process has ended.

The solution is using this function to warn the client of an active batch process. It is advisable to

use this function with statements which are expected to be executed longer then 40 seconds.

In order to limit the maximum wait time for long running processes, you can use a server side

parameter, <long timeout period>. Its default value is set to 1 hour and 30 minutes.

The Thin@ template automatically generates this function for reports.

Example

The following code is used to inform Thin@ that a long running process is going to start before

opening a Progress Window.

See also

ThinNetMgr.EndLongRunningProcess

 ! End of "Legacy: After Opening the Window"
 IF ThinNetMgr.Active THEN

 ThinNetMgr.StartLongRunningProcess()

 ThinNetMgr.OpenWindow(ProgressWindow).

 END

ThinNetMgr.StartLongRunningProcess PROCEDURE()

http://www.thinetsolution.com

 51

40. Informing Thin@ that a long running Server job is about to end

Use this function when you want to inform Thin@ that a long-running Server job (such as a long-

running report) is about to end.

Note that the Thin@ template automatically generates this function call for reports.

Prototype

Usage notes

See ThinNetMgr.StartLongRunningProcess.

Example

In this example the EndLongRunningProcess is called in the ThisWindow.AskPreview method and

is used to inform Thin@ that a long running process has ended.

It is called after the report is generated and before it is transferred from the Server to the Client

and previewed on the Client.

See also

ThinNetMgr.StartLongRunningProcess

IF ThinNetMgr.Active AND SELF.Response = RequestCompleted THEN

 ENDPAGE(SELF.Report)

 RisNetMgr.EndLongRunningProcess()

 RisNetMgr.DownloadFiles(SELF.PreviewQueue,

SELF.PreviewQueue.FileName,'REPORT<-4->'& Report{PROP:Landscape} & '<-5->' &

SELF.SkipPreview)

END !IF

ThinNetMgr.EndLongRunningProcess PROCEDURE()

http://www.thinetsolution.com

 52

41. Informing Thin@ about application events

This function is used to inform Thin@ about application events.

Note that the Thin@ template automatically generates this function call at the end of every

ACCEPT loop.

Prototype

Parameters

Name Description

Wind Name of the WINDOW object.

Example

OPEN(MyWindow)

ACCEPT

 IF ThinNetMgr.Active THEN !Has to be added in the end of the ACCEPT loop

 ThinNetMgr.TakeEvent(MyWindow)

 END !IF

 END !ACCEPT

CLOSE(MyWindow)

RisNet:TakeEvent PROCEDURE(*WINDOW Wind)

http://www.thinetsolution.com

 53

42. Informing Thin@ that a WINDOW contains a LIST box (QUEUE as the data source)

This function is used to inform Thin@ that a window contains a LIST box, COMBO box or a DROP
down list control.
Note that the Thin@ template automatically generates this function call.

Prototype

Parameters

Name Description

WindowHandle Name of the WINDOW object.

Feq FEQ of the LIST box, COMBO box or a DROP down list control.

ListQueue Name of the QUEUE.

Usage notes

The Thin@ template automatically generates this function call after the OPEN statement on any
WINDOW that contains a LIST box, COMBO box or DROP down list control.
However, if you create the control manually (or using the CREATE statement) or if change the
source QUEUE by modifying the PROP:FROM property, you need to inform Thin@ about that.

Example

See also
ThinNetMgr.AddListControl (string expression as the data source)
ThinNetMgr.AddListEIPControl

ThinNetMgr.AddListControl PROCEDURE(*Window WindowHandle,LONG Feq,*QUEUE

ListQueue)

ListQueue QUEUE

Field1 STRING(100)

 END

MyWindow WINDOW('MyWindow'),SYSTEM,AT(,,225,123)

LIST, AT(9,20,97,76), USE(?List1), FORMAT('20L(2)|M'), FROM(ListQueue)

END

 CODE

 OPEN(MyWindow)

 ListQueue.Field1='FirstQueueRow'; ADD(ListQueue)

 ListQueue.Field2='SecondQueueRow'; ADD(ListQueue)

 !Has to be added after window opening for each ListBox control

 IF ThinNetMgr.Active THEN

 ThinNetMgr.AddListControl(MyWindow, ?List1, ListQueue)

 END !IF

!....

CLOSE(MyWindow)

http://www.thinetsolution.com

 54

43. Informing Thin@ that a WINDOW contains a LIST box (string expression as the
data source)

This function is used to inform Thin@ that a window contains a LIST box, COMBO box or a DROP
down list control. Note that the Thin@ template automatically generates this function call.

Prototype

Parameters

Name Description

WindowHandle Name of the WINDOW object.

Feq FEQ of the LIST box, COMBO box or a DROP down list control.

DataString Source data in form of a string expression.

Usage notes

See ThinNetMgr.AddListControl (QUEUE as the data source).

Example
In this example the function is called twice: the first after the WINDOW is opened, and the second
time after the source string of the LIST box is modified.

See also
ThinNetMgr.AddListControl (QUEUE as the data source)
ThinNetMgr.AddListEIPControl

MyWindow WINDOW('MyWindow'),SYSTEM,AT(,,225,123)

LIST, AT(121,20,97,76), USE(?List2), FROM('FirstStringRow|SecondStringRow')

BUTTON('Refresh'), AT(183,102,35,14), USE(?Button)

END

 CODE

 OPEN(MyWindow)

 !Has to be added after opening the window for every ListBox control

 IF ThinNetMgr.Active THEN

 ThinNetMgr.AddListControl(MyWindow, ?List2, ?List2{PROP:From})

 END !IF

 ACCEPT

 IF EVENT()=EVENT:Accepted AND FIELD()=?Button THEN

 ?List2{PROP:From} = ?List2{Prop:From} & '|ThirdStringRow'

!Has to be called every time you modify the source string

 IF ThinNetMgr.Active THEN

 ThinNetMgr.AddListControl(MyWindow, ?List2, ?List2{PROP:From})

 END !IF

 END !IF

END !ACCEPT

CLOSE(MyWindow)

ThinNETMgr.AddListControl PROCEDURE(*Window WindowHandle, LONG Feq, ?

DataString)

http://www.thinetsolution.com

 55

44. Setting the default printer on the Client side

This function sets the default printer on the Client side.
Note that the currently set Client printer is readable by the ThinNetMgr.ClientPrinter property.

Prototype

Parameters

Name Description

PrinterName The name of the printer on the Client side.

Example
In this example we call PRINTERDIALOG and use its return value to set the Client printer.

See also
ThinNetMgr.ClientPrinter

ThinNetMgr.SetClientPrinter PROCEDURE(STRING PrinterName)

PRINTERDIALOG('Choose Printer')

PrinterName“ = ThinNetMgr.ClientPrinter

ThinNetMgr.SetClientPrinter = PrinterName“

http://www.thinetsolution.com

 56

45. Executing a code on the Client side

This function executes a piece of code on the Client side.

Prototype

Parameters

Name Description

Var1 General-purpose input string used to pass values from the Server to
the Client side.
Common use is to specify the exact block of code that you wish to
execute on the Client.

<Var2>...<Var7> Same as above.

Return value: STRING
The function can return any string value from the Client back to the Server.

Usage notes
Before you can call this function in your application, you need to modify the Thin@ Client
(NetClient.app) and add the source code that you wish to execute on the Client machine.

Example 1
In this example we show a STOP message on the Client side.
Note that the STOP message is not executed in the application instance that is running on the
Server.

This line of code is added to the (Server-side) application:

This line of code is added to the ClientSource procedure in the Thin@ client (NetClient.app)
application:

IF Var1='1' THEN STOP('stop shown').

IF ThinNetMgr.Active THEN

 ThinNetMgr.ExecuteClientSource(‘1’)

END

ThinNetMgr.ExecuteClientSource PROCEDURE(STRING Var1,<STRING Var2>,<STRING

Var3>,<STRING Var4>,<STRING Var5>,<STRING Var6>,<STRING Var7>),STRING, PROC

http://www.thinetsolution.com

 57

Example 2
In this example we return a value from the Client to the Server.
Suppose that we want to detect the Client’s machine screen resolution and send that information
to the (Server-side) application.

This line of code is added to the (Server-side) application:

This line of code is added to the ClientSource procedure in the Thin@ client (NetClient.app)
application:

See also

RisNet:RunOnClient

46. Starting Thin@ communication

This function is used to start Thin@ Server-Client communication in an application.
Note that the Thin@ template automatically generates this function call.

Prototype

Parameters

Name Description

<TemplateVersion> The version of the Thin@ template which is used to start Thin@.
If entered, this value is compared with the version of the Thin@
runtime library (ThinN@.DLL) and if the two numbers are not equal the
program will report an error.

Example

IF ThinNetMgr.Active THEN

 ClientScreenResolution = ThinNetMgr.ExecuteClientSource(‘ScreenResolution’)

END

If Var1=’ ScreenResolution’ THEN

 ! Write your code to detect the client machine screen resolution

RETURN ScreenResolution

END !IF

ThinNetMgr.Start('2.2')

Start PROCEDURE(<STRING TemplateVersion>)

mailto:ThinN@.DLL

http://www.thinetsolution.com

 58

47. Forcing a WINDOW running in another thread to refresh

This function is used to force a WINDOW running in another THREAD to refresh, e.g. after posting
an EVENT to it.

Prototype

Parameters

Name Description

ThreadNo THREAD() number that contains the WINDOW object that you wish to
refresh. Default is 0 (it refreshes all active windows).

Usage notes
Although Thin@ allows POSTing an EVENT to a WINDOW on another THREAD, the results of that
EVENT won’t be displayed on the other window until it gains focus.
If you want to force refresh of another threaded WINDOW while the focus is still on the current
WINDOW, you can accomplish that using this function. It forces refresh of another threaded
WINDOW but the focus returns to the current WINDOW.

Important note is that the ThinNetMgr.DisplayThread (or synonym RisNet:DisplayThread()) will
force refresh on specific window thread and wait that specific thread is free of all events before
sending information to the client side. This means that entire refresh process will be locked until
all refreshing threads are done with their processing.

Example
In this example there are two WINDOW objects, each running on its own THREAD.
Window 2 saves its THREAD number after opening:

Window 2 has some code in the EVENT:User embed:

Window 1 posts EVENT:User to Window 2 and forces it to DISPLAY, effectively selecting the next
item in the list:

See also
ThinNetMgr.Display

ThinNetMgr.DisplayThread PROCEDURE(LONG ThreadNo=0)

! Embed point: After Opening the Window

Winthread[2] = THREAD() ! Save thread 2

! EVENT:User posted; Selecting next item in list...

OF Event:User

 IF choice(?list)=4 THEN Select(?list,1) ELSE Select(?list,choice(?list)+1).

 DISPLAY()

! Force display thread 2

ThinNetMgr.DisplayThread()

POST(EVENT:User,, WinThread[2])

http://www.thinetsolution.com

 59

48. Registering a custom resources subfolder (for images, icons etc.)

This function registers a custom subfolder (in the application directory on the Server) that contains
application resources (images, icons, executables etc.).

Prototype

Parameters

Name Description

ImagePath Full PATH to the resource folder on the Server.

OnTop If set to 1, this resource folder will be set on top of the scanning list
(possible speed optimization).
Default is 0.

Usage notes
In a Thin@ application, all images and icons must be found on the Server and can’t be embedded
in the application EXE.
Thin@ by default scans the root application folder and the \Images subfolder (if it exists). If you’re
using an image in your application and it is not found in these folders the image won’t display.
However, if you would like to use a custom subfolder for your resource files, you can use this
function.

Example
In this example we register a resource folder on the Server in which Thin@ will search for resource
files such as images.

See also
ThinNetMgr.AddImageLibrary

AddImageFolder PROCEDURE(STRING ImagePath,BYTE OnTop=0)

ThinNETMgr.AddImageFolder('D:\Thin@DemoApp\ImageFolder\')

http://www.thinetsolution.com

 60

49. Registering a custom resources file (for images, icons, etc.)

This function registers a custom archive file (in the application directory on the Server) that
contains application resources (images, icons, executables etc.).
The file can be password protected to protect intellectual property.

Prototype

Parameters

Name Description

ImageLibrary Full PATH to the resource file on the Server.

<ImageLibrarySubdirectory> Name of the resource subfolder that is automatically created in
the Windows temporary folder on the Server.
Resource files are decompressed in this subfolder (e.g.
C:\Documents and Settings\<UserName>\Local
Settings\Temp\ImageLibrarySubdirectory\)

<ImageLibraryPassword> Optional password for the resource file.

ForceDownloadCheck If set to 1, the function will compare files in the ImageLibrary by
name and date with files that are already downloaded. If the files
on the Client are older than the files on the Server, they will be
overwritten.
Default is 0.

Usage notes
In some cases you might want to distribute all your resource files inside a resource archive file,
and optionally protect it with a password.

Example
This example requires that the ‘Thin.7z’ resource file exists in the specified folder and 7z.exe must
be present in the application folder. It will decompress the resource files to the ‘SubFolder’ folder
using the password ‘MyPassword’, and Thin@ will continue to use the resource files from that
folder.

See also
ThinNetMgr.AddImageFolder

AddImageLibrary PROCEDURE(STRING ImageLibrary,<STRING

ImageLibrarySubdirectory>,<STRING ImageLibraryPassword>,BYTE

ForceDownloadCheck=0)

ThinNETMgr.AddImageLibrary('D:\DemoApp\Thin.7z','SubFolder','MyPassword')

http://www.thinetsolution.com

 61

50. Forcing immediate WINDOW refresh

This function forces immediate WINDOW refresh on the Client.

Prototype

Parameters

Name Description

<WindowHandle> Name of the WINDOW object. If omitted, the current WINDOW is
refreshed.

ForceEnd Internal use. Default is 0.

vWindowHandle Internal use. Default is 0.

Usage notes
If you want to refresh the current window immediately, without waiting for the end of all window
events, you can do it with this function.

Example
This example demonstrates one of the situations where immediate window refresh can be useful.
We have two windows, each on its own THREAD.

If used in a non-Thin@ application, the following code on the Window 1 button would a) change
the ?Prompt1 text; b) switch thread to Window 2; and c) POST Event:User on Window 2.

However, in a Thin@ application the text of ?Prompt1 on Window 1 would not change because
Thin@ would switch the current THREAD to Window 2 before that (by setting the
ThinNetMgr.CurrentThread property). In order to force immediate display of Window 1 before the
THREAD is actually switched to Window 2, we would modify the code and add the
ThinNetMgr.Display function before the switching the THREAD:

See also
ThinNetMgr.DisplayThread

Display PROCEDURE(<*Window WindowPtr>,BYTE ForceEnd=0, LONG vWindowHandle =

0),BYTE

?Prompt1{prop:text} = 'Changed text...'

ThinNETMgr.Display(Window1) ! Force window display

ThinNetMgr.CurrentThread = WinThread[2]

POST(Event:User,,WinThread[2])

?Prompt1{prop:text} = 'Changed text...' !Try to change the text of ?Prompt1

ThinNetMgr.CurrentThread = WinThread[2] !Change current thread to Window 2

POST(Event:User,,WinThread[2]) !Post Event:User on Window 2

http://www.thinetsolution.com

 62

51. Informing Thin@ that the PROP:EDIT property of a LIST box changed

This function is used to inform Thin@ that the PROP:EDIT property of a LIST box changed value.
Note that the Thin@ template automatically generates this function call.

Prototype

Parameters

Name Description

pListFeq FEQ of the LIST box control.

Column Element number of the PROP:EDIT array which indicates the column
number to edit.

ControlFeq FEQ of the control to perform edit-in-place for a LIST box column.

Usage notes

The Thin@ template automatically generates this function call for the ResetColumn and
ClearColumn class methods of the EIPManager.
However, if you’re hand-coding the LIST box control and EIP entry you need to inform Thin@
about any PROP:EDIT assignment that takes place.

Example

See also
ThinNetMgr.AddListControl (string expression as the data source)
ThinNetMgr.AddListControl (QUEUE as the data source)

AddListEIPControl PROCEDURE(LONG pListFeq,LONG Column,LONG ControlFeq)

Win1 WINDOW('List Edit In Place'),AT(0,1,308,172),SYSTEM

 LIST,AT(6,6,120,90),USE(?List),COLUMN,FORMAT('60L@s15@60L@s15@'), FROM(Q)

 END

?EditEntry EQUATE(100)

CODE

OPEN(Win1)

CREATE(?EditEntry,CREATE:Entry)

ACCEPT

 CASE FIELD()

!...

 OF ?EditEntry

 CASE EVENT()

 OF EVENT:Accepted

 PUT(Q)

 ?List{PROP:edit,?List{PROP:column}} = 0

 IF ThinNETMgr.Active THEN

 ThinNETMgr.AddListEIPControl(?List,?List{PROP:column},0)

 END !IF

 END !CASE EVENT

 END !CASE FIELD

END !ACCEPT

http://www.thinetsolution.com

 63

52. Assigning various Thin@ options

This function can be used to assign various Thin@ options to WINDOW and CONTROL objects.

Prototype

Parameters

Name Description

WindowHandle Name of the WINDOW object.

Id FEQ of the CONTROL object that the option is assigned to.
If set to 0, the option is assigned to the whole WINDOW.

OptionVar This field can contain an option name and assigned value, in the following
format: <Option name><Option value>.

These are the valid option names:

Option name Applies to Description

Size= TEXT
CONTROL

Maximum size of the control (number of
characters).

ForcedTimerRefresh= WINDOW If set to 1, Thin@ will force the TIMER to
refresh on a WINDOW

ForcedHide= WINDOW If set to 1, the WINDOW will be hidden on
the Client side.

TabBarStyle= SHEET
CONTROL

MDI Tab bar style. Possible values are:

Value Description

-1 None

1 Black and white

2 Colored

3 (default) Squared

4 Boxed

TabOrientation= SHEET
CONTROL

Tab orientation.

ParsePipe= CONTROL If set to 1, Thin@ will correctly parse to pipe
(|) character on a LIST box.
Also configurable as a template option.

This field can also contain an option value, without a name.

These are the valid option values:

Option value Description

1 Refresh the CONTROL on EVENT:ACCEPTED

2 Refresh the CONTROL on EVENT:SELECTED

3 Refresh the CONTROL on both EVENT:ACCEPTED and
EVENT:SELECTED

4 Hide the CONTROL on the Client.

NOTE: All of these options are configurable through the Thin@ template.

AddOption PROCEDURE(*Window WindowHandle,LONG Id,? OptionVar)

http://www.thinetsolution.com

 64

Usage notes

These options are usually configured through the Thin@ template options. Individual use is rare,
except in hand-coded applications.

Example

In this example we instruct Thin@ to force the refreshing of the WINDOW timer.

53. Forcing image refresh of an image file that was modified during runtime

This function is used to force image refresh of an image file that was modified during runtime.

Prototype

Parameters

Name Description

Feq FEQ of the image CONTROL.

Usage notes

If an image file gets modified during runtime, Thin@ normally does not refresh the IMAGE. You
can use this function to force image refresh.
It will refresh the IMAGE only if the file was modified.

ThinNETMgr.AddOption(QuickWindow,0,'forcedtimerrefresh=1')

DisplayControlImage PROCEDURE(LONG Feq)

http://www.thinetsolution.com

 65

54. Informing Thin@ that a WINDOW contains an RTF Control

This function is used to inform Thin@ that a WINDOW contains an RTF Control.
Note that the Thin@ template automatically generates this function call.

Prototype

Parameters

Name Description

WindowHandle Name of the WINDOW object.

Feq FEQ of the RTF Control.

RTFControlClass Object name of the RTF Control Class.

Example
In this typical example the RTF Control is initialized and the required Thin@ function is called to
inform Thin@ about the RTF Control.

AddRtfControl PROCEDURE(*Window WindowHandle, LONG Feq, *RTFControlClass

RTFCClass)

! RTF ?RTFTextBox Initialize

 RTFControl19.Init(?RTFTextBox)

 ! Thin@ - ?RTFTextBox RTF control

 IF ThinNetMgr.Active THEN

ThinNetMgr.AddRTFControl(Window, ?RTFTextBox, RTFControl19).

 END

http://www.thinetsolution.com

 66

55. Adding a file to the Thin@ Download List

This function can be used to add a file to the Thin@ download list.

Prototype

Parameters

Name Description

FilePath Full path to the file on the Server.

Compression Deprecated.

Recheck If 1, Thin@ will recheck if the file changed.

Usage notes
This function is implicitly called on every WINDOW that has images and icons, so it’s rarely needed
in programming. However, it is needed in certain situations. For example, if you’re using OCX
controls that have images/icons, those images/icons will not be scanned by Thin@ and you have
to explicitly call this function.

Example

See also
RisNet:DownloadFile

AddFileToDownloadList PROCEDURE(*? FilePath, BYTE Compression=0, BYTE Recheck

= 0)

! RTF ?RTFTextBox Initialize

 RTFControl19.Init(?RTFTextBox)

 ! Thin@ - ?RTFTextBox RTF control

 IF ThinNetMgr.Active THEN

ThinNetMgr.AddRTFControl(Window, ?RTFTextBox, RTFControl19).

 END

http://www.thinetsolution.com

 67

56. Returning the Thin@ Client-side library state of <CONTROL>{prop} values

This function can be used to return Client-side CONTROL properties from the Thin@ library.

Prototype

Parameters

Name Description

Feq FEQ of the Control.

pOption Property name.

Return value: STRING
The function returns a property value for the given CONTROL.

Usage notes
With this function you can check a property of a CONTROL on the Client side, even before it is
assigned. Rarely used.

GetControlOption PROCEDURE(LONG Feq,STRING pOption),STRING

http://www.thinetsolution.com

 68

III.2.6. Adding support for OLE/OCX/ActiveX controls

a) Creating OLE/OCX/ActiveX controls

This method assigns a PROP:Create statement to the Client-side OLE control.
Use this method in your application instead of the <OLE Control>{PROP:Create} statement.

Prototype

Parameters

Name Description

WindowHandle Name of the WINDOW object.

Feq FEQ of the OLE control.

CreateStatement Name of the OCX file.

Example

See also
RisNet:OCXRegister

ThinNetMgr.AddOCXControl PROCEDURE(*Window WindowHandle, LONG Feq, STRING

CreateStatement)

IF ThinNetMgr.Active THEN

 ThinNetMgr.AddOcxControl(Window,?ChartPro,'Codejock.ChartPro.v15.0.2.ocx')

ELSE

 ?ChartPro{PROP:Create} = 'Codejock.ChartPro.v15.0.2.ocx'

END

http://www.thinetsolution.com

 69

b) Assigning properties to OLE/OCX/ActiveX controls

This method sets a property of an OCX/OLE control.
Use this method in your application instead of the <OLE Control>{<Property>}= statement.

Prototype

Parameters

Name Description

Feq FEQ of the OLE control.

Expression This parameter can take one of the two:
- a name of an OCX property
- a PROP attribute of the OLE control

<SetValue> This parameter can be used in two different ways:
- a value that you want to assign to the OCX property
- a value of the PROP attribute

<WindowHandle> Name of the WINDOW object which contains the OLE control.
If omitted, the current window is used.

Usage notes
This method can be used for two different things:

 To set a property of a Client-side OCX control

 To set a PROP attribute of a Client-side OLE control

Example 1: Setting the value of an OCX property
In this example we set the ‘Value’ property of an OCX control:

Example 2: Setting an OLE property
In this example we set the PROP:DoVerb attribute of an OLE control:

See also
RisNet:GetOCXProperty

RisNet:SetOCXProperty PROCEDURE(LONG Feq,STRING Expression,<STRING

SetValue>,<*WINDOW WindowHandle>)

IF ThinNetMgr.Active THEN

 Risnet:SetOCXProperty(?OCXControl,'Value',FORMAT(TODAY(),@d6))

ELSE

 ?OCXControl{'Value'} = FORMAT(TODAY(),@D6) !Set control to TODAY

END

IF ThinNetMgr.Active THEN

 Risnet:SetOCXProperty(?OCXControl, PROP:DoVerb , DOVERB:Primary)

ELSE

 ?OCXControl{PROP:DoVerb} = DOVERB:Primary

END

http://www.thinetsolution.com

 70

c) Retrieving properties from OLE/OCX/ActiveX controls

This method gets a property of an OCX/OLE control.
Use this method in your application instead of checking the value of <OLE Control>{<Property>}

Prototype

Parameters

Name Description

Feq FEQ of the OLE control.

Property This parameter can take one of the two:
- a name of an OCX property
- a PROP attribute of the OLE control

<WindowHandle> Name of the WINDOW object which contains the OLE control.
If omitted, the current window is used.

Return value: STRING

- If the Property parameter is a name of an OCX property then the value of the specified OCX
property is returned.

- If the Property attribute is a PROP attribute then the value of the specified PROP attribute
is returned.

Example 1: Getting a property of an OCX control
The following example gets the ‘Value’ property of an OCX control.

Example 2: Getting a PROP attribute of an OLE control
The following example gets PROP:Ctrl attribute of an OLE control.

See also
RisNet:SetOCXProperty

IF ThinNetMgr.Active THEN

 DateField = RisNet:GetOCXProperty(?OCXControl,'Value')

ELSE

 DateField = ?OCXControl{'Value'}

END

RisNet:GetOCXProperty PROCEDURE(LONG Feq,STRING Property),STRING

IF ThinNetMgr.Active THEN

 DateField = RisNet:GetOCXProperty(?OCXControl,PROP:Ctrl)

ELSE

 DateField = ?OCXControl{PROP:Ctrl}

END

http://www.thinetsolution.com

 71

d) Registering an OCX callback event procedure

This function installs an OCX event callback procedure for the control.

Prototype

Parameters

Name Description

Feq FEQ of the OLE control.

EventProcAddress Memory address of the event processing callback procedure for the
control.

Usage notes
The callback procedure is called whenever an event is posted by the operating system to the
control. It should be used in Thin@ mode instead of the OCXREGISTEREVENTPROC method.

Example

See also
RisNet:OCXGetLastEventName
RisNet:OCXGetParamCount
RisNet:OCXGetParam

RisNet:OCXRegisterEventProc PROCEDURE(LONG Feq,LONG EventProcAddress)

!Register Event processing Callback

IF ThinNetMgr.Active THEN

 RisNet:OCXRegisterEventProc(?OcxObject,ADDRESS(EventFunc))

ELSE

 OCXREGISTEREVENTPROC(?OcxObject,EventFunc)

END

http://www.thinetsolution.com

 72

e) Getting the name of the last event sent to an OCX control

The function returns the last EVENT name sent to the OCX control.

Prototype

Returns the name of the last event sent to an .OCX control. Thin@ equivalent of

Parameters

Name Description

Reference The label of the first parameter of the event processing callback
procedure.

Return value: STRING
The last EVENT name sent to the OCX control is returned.

Example

See also
RisNet:OCXRegisterEventProc
RisNet:OCXGetParamCount
RisNet:OCXGetParam

RisNet:OCXGetLastEventName PROCEDURE(SHORT Reference),STRING

IF ThinNetMgr.Active THEN

Res = 'Event: ' & RisNet:OCXGetLastEventName(Reference)

ELSE

 Res = 'Event: ' & OleControl{PROP:LastEventName}

END

http://www.thinetsolution.com

 73

f) Returning the number of parameters associated with the current OCX event

This function returns the number of parameters associated with the current OCX event.

Prototype

Parameters

Name Description

Reference The label of the first parameter of the event processing callback
procedure.

Return value: STRING
The number of parameters associated with the current OCX event is returned.

Usage notes
This procedure is only valid when the OCX event processing callback function is active. Thin@
equivalent of OCXGETPARAMCOUNT.

Example

See also
RisNet:OCXRegisterEventProc
RisNet:OCXGetLastEventName
RisNet:OCXGetParam

RisNet:OCXGetParamCount PROCEDURE(SHORT Reference),STRING

!Cycle through all parameters
IF ThinNetMgr.Active THEN

LOOP Count = 1 TO RisNet:OCXGETPARAMCOUNT(Reference).

ELSE

LOOP Count = 1 TO OCXGETPARAMCOUNT(Reference).

END

http://www.thinetsolution.com

 74

g) Returning the value of a parameter associated with the current OCX event

This function returns the value of a parameter associated with the current OCX event.

Prototype

Parameters

Name Description

Reference The label of the first parameter of the event processing callback
procedure.

Count The number of the parameter to retrieve.

Return value
The value a parameter associated with the current OCX event is returned.

Usage notes
This procedure is only valid when the OCX event processing callback function is active. Thin@
equivalent of OCXGETPARAM.

Example

See also
RisNet:OCXRegisterEventProc
RisNet:OCXGetLastEventName
RisNet:OCXGetParamCount

RisNet:OCXGetParam PROCEDURE(SHORT Reference,LONG Count),STRING

IF ThinNetMgr.Active THEN

 Parm = RisNet:OCXGETPARAM(Reference,Count)

ELSE

 Parm = OCXGETPARAM(Reference,Count)

END

http://www.thinetsolution.com

 75

h) Registering an OCX control with the Client OS

This function registers the specified OCX control with the Client-side OS.

Prototype

Parameters

Name Description

FileName Full path to the OCX file you want to register.

ForceRegistration If set to 1 it will attempt to register the OCX control even if it is already
registered.
Default is 0.

Usage notes
The registration procedure will first check if the OCX control is registered on the client side.
If the OCX control is not registered on the Client, or the ForceRegistration parameter is set to 1,
the procedure will attempt to register the OCX file on the Client following these steps:

1. It will first check for the existence of the OCX file on the server in the root application
folder, \Resource subfolder and all image folders.

2. If the file is found on the server and the file does not exist on the client or if the client-side
file is older than the server-side file, the procedure will download the new file from the
server and register it on the client.

3. If the file on the client is newer it will register the file already on the client.

See also
ThinNetMgr.AddOCXControl

RisNet:OCXRegister PROCEDURE(STRING FileName,BYTE ForceRegistration = 0)

http://www.thinetsolution.com

 76

i) Binding an OCX variable

This function binds an OCX variable so that it can be used in dynamic expressions with Thin@ OCX
functions.

Prototype

Parameters

Name Description

BindName A string constant containing the identifier used in the dynamic expression. This
may be the same as variable.

Variable The label of the temporary variable on the Client side.

BindType If set to 1, the temporary variable on the Client side will be type LONG.
If set to 2, the temporary variable on the Client side will be type STRING.

Usage notes
See Clarion help on the BIND function for more information.

RisNet:OCXBind PROCEDURE(STRING BindName, <*? Variable>, <BYTE BindType>)

http://www.thinetsolution.com

 77

j) Ignoring an OCX event

This function is used to add an OCX event to the Thin@ OCX Event Ignore List in order to improve
performance.

Prototype

Parameters

Name Description

Feq FEQ of the OLE control.

pEvent Event number. Default is 0.

<EventExpression> If set to 1, the temporary variable on the Client side will be type LONG.
If set to 2, the temporary variable on the Client side will be type STRING.

<WindowHandle> Name of the WINDOW object.
If omitted, the CONTROL FEQ must be found on the current window.

Usage notes
Sometimes an OCX control performs events that trigger frequent Client-Server interactions but
that are not essential and often serve only minor aesthetic purposes.
However, due to frequent Client-Server interactions these events can have a significant impact on
speed and overall performance of the application in a Thin@ environment.
This function can be used to disable the event.

Example
In this example we disable certain events that not essential, but trigger frequent Client-Server
interactions.

RisNet:OCXAddSkipEvent PROCEDURE(LONG Feq, LONG pEvent=0, <STRING

EventExpression>,<*WINDOW WindowHandle>)

! CommandBars speed optimization

 RisNet:OCXAddSkipEvent(SELF.OCXCtrl, 2, ,NoyantisWind)

 RisNet:OCXAddSkipEvent(SELF.OCXCtrl, 0, 'ControlSelected',NoyantisWind)

 RisNet:OCXAddSkipEvent(SELF.OCXCtrl, 0, 'TrackingModeChanged',NoyantisWind)

 RisNet:OCXAddSkipEvent(SELF.OCXCtrl, 0, 'InitCommandsPopup',NoyantisWind)

 RisNet:OCXAddSkipEvent(SELF.OCXCtrl, 0, 'Update',NoyantisWind))

http://www.thinetsolution.com

 78

III.2.7. Sample application with OCX

The following example application demonstrates
Thin@ support for the Calendar OCX control. It
shows OCX control registration, initialization,
setting parameters to and getting parameters
from the OCX control and adding an event
processing callback function.
The lines of code specific to a Thin@
implementation are highlighted.

! This program uses the Calendar OCX that Microsoft ships with its Access95

! product (specifically, the one in MS Office Professional for Windows 95).

 PROGRAM

 MAP

 INCLUDE('OCX.CLW')

EventFunc PROCEDURE(*SHORT Reference,SIGNED OleControl,LONG

CurrentEvent),LONG

 END

 INCLUDE('OCXEVENT.CLW') !Constants that OCX events use

 INCLUDE('ERRORS.CLW') !Include errorcode constants

 INCLUDE('ThinN@.inc') !Include Thin@ methods and properties

ThinNetMgr NetManager !Thin@ class

!Event and change display queue

GlobalQue QUEUE

F1 STRING(255)

 END

SaveDate FILE,DRIVER('TopSpeed'),PRE(SAV),CREATE

Record RECORD

DateField STRING(10)

 END

 END

! Main Window definition

MainWin WINDOW('OCX Demo'),AT(,,360,167),STATUS(-1,-1),SYSTEM,GRAY,MAX,RESIZE

 MENUBAR,USE(?Menubar)

 MENU('&File'),USE(?FileMenu)

 ITEM('Save Date to File'),USE(?SaveObjectValue)

 ITEM('Retrieve Saved Date'),USE(?GetObject)

 ITEM('E&xit'),USE(?exit)

 END

 MENU('&Object'),USE(?MenuObject)

 ITEM('About Box'),USE(?AboutObject)

 ITEM('Set Date to TODAY'),USE(?SetObjectValueToday)

 ITEM('Set Date to 1st of Month'),USE(?SetObjectValueFirst)

 END

 ITEM('&Properties!'),USE(?ActiveObj)

 END

 LIST,AT(215,8,139,150),USE(?List1),HVSCROLL,FROM(GlobalQue)

 OLE,AT(5,8,200,150),USE(?OcxObject)

 END

 END

http://www.thinetsolution.com

 79

CODE

 ThinNetMgr.Start()

 OPEN(SaveDate)

 IF ERRORCODE() !Check for error on Open

 IF ERRORCODE() = NoFileErr !if the file doesn't exist

 CREATE(SaveDate) !create it

 IF ERRORCODE() THEN HALT(,ERROR()) END

 OPEN(SaveDate) !then open it for use

 IF ERRORCODE() THEN HALT(,ERROR()) END

 ELSE

 HALT(,ERROR())

 END

 END

 OPEN(MainWin)

 !Register OCX control on the system

 RisNet:OCXRegister('C:\Program files\Microsoft office\Office12\MSCAL.OCX')

 IF ThinNetMgr.Active THEN

 ThinNetMgr.AddOcxControl(MainWin, ?OcxObject,'MSCAL.Calendar.7')

 ThinNetMgr.AddListControl(MainWin, ?List1, GlobalQue)

 ELSE

 ?OcxObject{PROP:Create} = 'MSCAL.Calendar.7' !MS Access 95 Cal OCX control

 END

 IF RECORDS(SaveDate) !Check for existing saved record

 SET(SaveDate) !and get it

 NEXT(SaveDate)

 IF ERRORCODE() THEN STOP(ERROR()).

 POST(EVENT:Accepted,?GetObject)

 ELSE

 ADD(SaveDate) !or add one

 IF ERRORCODE() THEN STOP(ERROR()).

 END

 IF ?OcxObject{PROP:OLE} !Check for an OLE Object

 GlobalQue = 'An Object is in the OLE control'

 ADD(GlobalQue)

 IF ?OcxObject{PROP:Ctrl} !See if Object is an OCX

 GlobalQue = 'It is an OCX Object'

 ADD(GlobalQue)

 END

 END

 DISPLAY

!Register Event processing Callback

 IF ThinNetMgr.Active THEN

 RisNet:OCXRegisterEventProc(?OcxObject,ADDRESS(EventFunc))

 ELSE

 OCXREGISTEREVENTPROC(?OcxObject,EventFunc)

 END

 ?OcxObject{PROP:ReportException} = 1 !Enable the OCX's error reporting

http://www.thinetsolution.com

 80

ACCEPT

 CASE EVENT()

 OF EVENT:Accepted

 CASE FIELD()

 OF ?Exit

 POST(EVENT:CloseWindow)

 OF ?AboutObject

 ?OcxObject{'AboutBox'} !Display control's About Box

 OF ?SetObjectValueToday

 IF ThinNetMgr.Active THEN

 Risnet:SetOCXProperty(?OCXObject,'Value',FORMAT(TODAY(),@d6))

 ELSE

 ?OcxObject{'Value'} = FORMAT(TODAY(),@D6) !Set control to TODAY's date

 END

 OF ?SetObjectValueFirst

 IF ThinNetMgr.Active THEN

 ELSE

 ?OcxObject{'Value'} = MONTH(TODAY()) & '/1/' & SUB(YEAR(TODAY()),3,2)

 END

 OF ?SaveObjectValue !Save control's value to file

 IF ThinNetMgr.Active THEN

 SAV:DateField = RisNet:GetOCXProperty(?OcxObject,'Value')

 ELSE

 SAV:DateField = ?OcxObject{'Value'}

 END

 PUT(SaveDate)

 IF ERRORCODE() THEN STOP(ERROR()).

 OF ?GetObject !Set control's value from file

 IF ThinNetMgr.Active THEN

 ELSE

 ?OcxObject{'Value'} = SAV:DateField

 END

 OF ?ActiveObj

 !?OcxObject{PROP:DoVerb} = 0 !Activate control's property dialog

 ?OcxObject{PROP:DOVERB} = 0 !Activate control's property dialog

 END

 END

 IF ThinNetMgr.Active THEN ThinNetMgr.TakeEvent(MainWin).

 END

http://www.thinetsolution.com

 81

!Event processing callback function

EventFunc PROCEDURE(*SHORT Reference,SIGNED OleControl,LONG CurrentEvent)

Count LONG

Res CSTRING(200)

Parm CSTRING(30)

 CODE

 IF CurrentEvent <> OCXEVENT:MouseMove !Eliminate mouse move events

 IF ThinNetMgr.Active THEN

 Res = 'Event: ' & RisNet:OCXGetLastEventName(Reference)

 !Cycle through all parameters

 LOOP Count = 1 TO RisNet:OCXGETPARAMCOUNT(Reference)

 !Get each parameter name

 Parm = RisNet:OCXGETPARAM(Reference,Count)

 !and concatenate them together

 Res = CLIP(Res) & ' - ' & Parm

 END

 ELSE

 Res = 'Event: ' & OleControl{PROP:LastEventName}

 !Cycle through all parameters

 LOOP Count = 1 TO OCXGETPARAMCOUNT(Reference)

 !Get each parameter name

 Parm = OCXGETPARAM(Reference,Count)

 !and concatenate them together

 Res = CLIP(Res) & ' - ' & Parm

 END

 END

 GlobalQue = Res !Assign to a global QUEUE

 ADD(GlobalQue) !and add the entry

 DISPLAY

 END

 RETURN(True)

http://www.thinetsolution.com

 82

IV. Thin@ Class Properties

This chapter covers the Thin@ class properties.

IV.1. General Thin@ class properties

1. ThinNetMgr.Active

Declaration

This property is used to check if the application is running in Thin@-mode.
Returns 1 if Thin@ is active, 0 if it is not active.

Example

2. ThinNetMgr.ClientPrinter

Declaration

This is the default printer on the client side.

3. ThinNetMgr.State

Declaration

This is the state of the Thin@ server.

It can be in one of these three states:
0 – Thin@ server waiting for the Client
1 – Thin@ sending a response to the Client
2 – Thin@ server in transition phase

ThinNetMgr.ClientPrinter CSTRING

ThinNetMgr.State BYTE

IF ThinNetMgr.Active THEN

 ! <YOUR CODE HERE>

END

ThinNetMgr.Active BYTE

http://www.thinetsolution.com

 83

4. ThinNetMgr.CurrentThread

Declaration

This is the current thread in the Thin@ library. It can be different from THREAD().

Usage note: Exiting the window prior to opening

Sometimes in programming there is a need to exit a window even before it is opened. For

example, if authorization checks are implemented directly in the WINDOW code. After the window

is initiated, Thin@ will wait for the window to open. If the opening does not happen because of

our forced RETURN procedure code, then the application will probably hang. It is advised to use

this code before the OPEN(WINDOW) statement:

This code will automatically switch to the current thread and window and notify its activity. It will

not wait for a new window to open as well.

5. ThinNetMgr.ThreadBusy

Declaration

Thread number that is currently communicating with the Client.

6. ThinNetMgr.ClientPath

Declaration

This is the default temporary folder on the client side.
The RisNet:DownloadFile function uses this as default if no other download path is specified.

On Windows platforms it is usually: “C:\Documents and Settings\<UserName>\Local
Settings\Temp”

7. ThinNetMgr.FilePath

Declaration

This is the default temporary folder on the server side.

ThinNetMgr.CurrentThread LONG

ThinNetMgr.ThreadBusy BYTE

ThinNetMgr.ClientPath CSTRING

ThinNetMgr.FilePath CSTRING

IF ThinNetMgr.Active THEN

 ThinNetMgr.CurrentThread=0{prop:thread}

 NOTIFY(401h,0{prop:thread})

 END

http://www.thinetsolution.com

 84

On Windows platforms it is usually: “C:\Documents and Settings\<UserName>\Local
Settings\Temp”

8. ThinNetMgr.FileDirPath

Declaration

This is the default temporary folder created on the server for storing files of each user. The folder

name is unique and is determined by the serial number of the client machine (visible from the

NetSetup utility).

If RisNet:UploadFile function is used without specifying an upload path, this folder is created

automatically and the file is stored in it.

However, if you want to use this variable and the folder is not already automatically created by

RisNet:UploadFile, you can create it manually by executing the following function:

ApiCreateDirectory(ThinNetMgr.FileDirPath)

ThinNetMgr.FileDirPath CSTRING

http://www.thinetsolution.com

 85

IV.2. Thin@ user session properties

The Thin@ user session properties contain a lot of useful information about a Thin@ user session.

Usage notes
For example, if you would like to know the Thin@ username of the currently logged user, you
would use the following code:

Username” = ThinNetMgr.Stats.Username

ThinNetMgr.Stats.ProcessId ULONG

ThinNetMgr.Stats.AppName CSTRING(51)

ThinNetMgr.Stats.UserName CSTRING(51)

ThinNetMgr.Stats.Password CSTRING(51)

ThinNetMgr.Stats.ClientIpAddress CSTRING(51)

ThinNetMgr.Stats.ClientWebAddress CSTRING(51)

ThinNetMgr.Stats.ClientSerial CSTRING(51)

ThinNetMgr.Stats.ClientType CSTRING(51) ! Values: WinClient6,

WinClient7, Java Client

ThinNetMgr.Stats.ClientResolution CSTRING(51) ! Format: 1920x1080

ThinNetMgr.Stats.ClientOSVersion CSTRING(51) ! Values:

Win3.1,Win95,Win98,WinME,WinXP64Bit,WinXP,NT_3.51,NT_4.0,Win2000,WinServer200

3,Win2000,WinVista,WinServer2008,Win7,WinServer2008R2

ThinNetMgr.Stats.LastRefreshTime LONG

ThinNetMgr.Stats.LastRefreshDate LONG

ThinNetMgr.Stats.LastRefreshTimea LONG

ThinNetMgr.Stats.LastRefreshDatea LONG

ThinNetMgr.Stats.StartDate LONG

ThinNetMgr.Stats.StartTime LONG

ThinNetMgr.Stats.LongRunning BYTE

ThinNetMgr.Stats.ActiveTime LONG

ThinNetMgr.Stats.ClientType CSTRING(51) ! Possible values:

WinClient6, WinClient7

ThinNetMgr.Stats.ClientResolution CSTRING(51) ! Format: 1920x1080

ThinNetMgr.Stats.ClientOSVersion CSTRING(51) ! Possible values: Win3.1,

Win95, Win98, WinME, WinXP64Bit, WinXP, NT_3.51, NT_4.0, Win2000,

WinServer2003, Win2000, WinVista, WinServer2008, Win7, WinServer2008R2

http://www.thinetsolution.com

 86

V. Implementing Thin@ in a 100% hand-coded application

Example Hand-coded Window Procedure:

PROGRAM

 MAP

handcoded PROCEDURE

 END

INCLUDE('thinn@.inc')

ThinNetMgr NetManager

 CODE

 handcoded

handcoded PROCEDURE

ListQueue QUEUE

Field1 STRING(100)

Field2 STRING(100)

 END

MyWindow WINDOW('MyWindow'),SYSTEM,AT(,,225,123),FONT('MS Sans Serif', 8,,

FONT:regular),GRAY,Maximize

PROMPT('From Queue:'), AT(7,9), USE(?Prompt1)

LIST, AT(9,20,97,76), USE(?List1), FORMAT('20L(2)|M'), FROM(ListQueue)

LIST, AT(121,20,97,76), USE(?List2), FROM('FirstStringRow|SecondStringRow')

BUTTON('Refresh'), AT(183,102,35,14), USE(?Button)

PROMPT('From String:'), AT(121,9), USE(?Prompt2)

 END

 CODE

 OPEN(MyWindow)

IF ThinNETMgr.Active THEN ThinNETMgr.OpenWindow(MyWindow).

 ListQueue.Field1='FirstQueueRow'; ADD(ListQueue)

 ListQueue.Field2='SecondQueueRow'; ADD(ListQueue)

 !Has to be added after opening the window for every ListBox control

 IF ThinNetMgr.Active THEN

 ThinNetMgr.AddListControl(MyWindow, ?List1,ListQueue)

 ThinNetMgr.AddListControl(MyWindow, ?List2, ?List2{PROP:From})

 END !IF

 ACCEPT

 IF EVENT()=EVENT:Accepted AND FIELD()=?Button THEN

 ?List2{PROP:From} = ?List2{Prop:From} & '|NewStringRow'

!Has to be called every time you change a string which is used to fill a

!ListBox

 IF ThinNetMgr.Active THEN

 ThinNetMgr.AddListControl(MyWindow, ?List2, ?List2{PROP:From})

 END !IF

 END !IF

 IF ThinNetMgr.Active THEN !Has to be added in the end of the ACCEPT loop

 ThinNetMgr.TakeEvent(MyWindow)

 END !IF

 END !ACCEPT

IF ThinNETMgr.Active THEN ThinNETMgr.CloseWindow(MyWindow).

CLOSE(MyWindow)

http://www.thinetsolution.com

 87

This is an example hand-coded application. Thin@ calls are highlighted. The first highlighted block
adds support for two LIST box controls. If the LIST box is populated from a queue, it is enough to
add one line of code for each LIST box after opening the window.

However, if the LIST box is populated from a string, a line of code is necessary to refresh the LIST
box after every change. Thus, the second block adds support for dynamically changing the
{PROP:From} of a LIST box filled from a string.

The third block is mandatory for every window and it goes in the end of the window ACCEPT
LOOP.

http://www.thinetsolution.com

 88

VI. Thin@ NetClient application tweaking

Being a Smart Client environment, the Thin@ developer installation package contains the full

source code of the default Thin@ Client application (NetClient.app).

This chapter covers the most common reasons for modifying the Thin@ Client.

The chapter is divided in 5 sections, and those are:

 Modifying the Thin@ Client GUI

 Thin@ Client global embed points

 Adding Multilanguage support to the Thin@ Client

 Tweaking compression and decompression routines

 Tweaking the print preview window & making support for custom/3rd party print preview

procedures

Note that there are other possible reasons for wanting to modify the default Thin@ Client that are

not covered in this chapter. Examples include adding support for external devices (e.g. scanners),

support for certain 3rd party products, calling Client-side Windows API functions etc.

http://www.thinetsolution.com

 89

VI.1. Modifying the Thin@ Client GUI

Feel free to completely modify the look & feel of your client application, including the window size

and appearance, the position and choice of various elements such as images, buttons, sheets, etc.

Make sure to replace this
with the name of your
company, or whatever
else you want !

http://www.thinetsolution.com

 90

VI.2. Thin@ Client global embed points

a) AfterCreatingWindow

This function is called each time a WINDOW is opened.

Prototype

Usage notes
You can add your own code that you wish to be executed every time after a WINDOW is opened
on the Client side.

b) BeforePaintingControl

This function is called before a CONTROL is drawn on the Client side.

Prototype

Usage notes
Rarely used.

Return value
If the derived function returns 0 the library will skip the paint process for that CONTROL.

AfterCreatingWindow PROCEDURE(),VIRTUAL

BeforePaintingControl PROCEDURE(LONG Feq,BYTE Created=0,BYTE

Last=0),BYTE,VIRTUAL

http://www.thinetsolution.com

 91

c) AfterPaintingControl

This function is called after a CONTROL is drawn on the Client side.

Prototype

Usage notes
Rarely used.

d) TakeClientEvent

This function is called for each event generated inside an ACCEPT loop.

Prototype

Return value
If the derived function returns 0 the library will skip sending the event to the Server side.

Usage notes
Rarely used.

AfterPaintingControl PROCEDURE(LONG Feq,BYTE Created=0,BYTE Last=0),VIRTUAL

TakeClientEvent PROCEDURE(*Window WindowHandle),BYTE,PROC,VIRTUAL

http://www.thinetsolution.com

 92

VI.3. Adding Multilanguage support to the Thin@ Client

The language of the client system messages can be easily changed in the client source code:

Step 1:
Click on the SOURCE (!Get
client info data)
embedded source code

Step 2:
Replace the system
messages in english with
their equivalents in
another language

http://www.thinetsolution.com

 93

VI.4. Tweaking compression and decompression routines

Thin@ uses two standard file compressor programs:

7zip - www.7zip.com

or

WinRar - www.winrar.com

7zip compressor is set as default, but you can change this by changing the value of the

ThinNetMgr.CompressionType variable. Simply add this program line somewhere in your source

code:

Using rar.exe compression:

Using 7z.exe compression:

If it is set to 0 (False) on the client and server side, Thin@ will use the ‘7z.exe’ command line tool

for file compression and decompression.

If it is set to 1 (True) on the client and server side, Thin@ will use the ‘rar.exe’ command line tool

for file compression and decompression.

When using the above mentioned programs (7z.exe or rar.exe), they need to be available both on

the server side and on the client side.

If there is a need (for some reason) to replace the internal routines with your own compression

method, it is advisable to use the defined virtual routines. The ThinNetMgr class is defined in this

way:

FileName – the name of the file you want to compress

Archive – the name of the archive you want to create

QF – the name of the queue which contains a list of files you want to compress

FilePath - the path in which the file archive will be decompressed

ThinNetMgr.CompressionType = 0

ThinNetMgr.CompressionType = 1

ThinNETMgr CLASS(NetManager)

CompressFile PROCEDURE(STRING FileName,STRING Archive),DERIVED

CompressFiles PROCEDURE(*QUEUE QF,*? FileName,STRING Archive),DERIVED

DecompressFile PROCEDURE(STRING Archive,STRING FilePath),DERIVED

 END

http://www.7zip.com/
http://www.winrar.com/

http://www.thinetsolution.com

 94

How to add your own compression and decompression calls in the defined routines:

Example:

Don’t forget to finish your statements with a ‘RETURN’ call or the standard parent routines will be

called as well!

Step 1:
Click on Global
properties button

Step 2:
Click on 'Embeds'

Step 3:
Scroll down and
add write your
own compression
routine

http://www.thinetsolution.com

 95

VI.5. Tweaking the print preview window & making support for custom/3rd party
print preview procedures

Thin@ uses the standard print preview dialog on the client side (PDF creating is included). If there

is a need to replace the standard print preview dialog with something else, it is advisable to use

the defined virtual functions. The ThinNetMgr class is defined in this way:

PrintPreviewQueue – a queue that contains all .wmf files downloaded and generated from the

server side

FileName – a queue variable containing the exact file names on the client side

pLandscape – a parameter which indicates that the report should be previewed in landscape

mode

By supplying your own function call to this routine and supplying the RETURN call, the client

program can be tweaked with additional preview routines. The function is using

PrintPreviewQueue, FileName and Landscape parameters.

If you want to add your own print preview routine, you can add your own code to the ThinNET

print preview CODE routine and to the ThinNET print preview DATA routine embed points.

ThinNETMgr CLASS(NetManager)

PrintPreview PROCEDURE(*QUEUE PrintPreviewQueue,*? FileName, LONG

pLandscape), BYTE, DERIVED

 END

http://www.thinetsolution.com

 96

This is how the original Thin@ print preview window routine looks like:

NetManager.PrintPreview PROCEDURE(*QUEUE

PrintPreviewQueue,*? FileName,LONG pLandscape)

Previewer CLASS(PrintPreviewClass)

 END

TargetSelector &ReportTargetSelectorClass

pWMFParser &WMFDocumentParser

PDFReporter CLASS(PDFReportGenerator)

 END

pReport REPORT

 END

ReportQueue QUEUE(PrintPreviewFileQueue).

CODE

 FREE(ReportQueue)

 LOOP I#=1 TO RECORDS(PrintPreviewQueue)

 GET(PrintPreviewQueue,I#)

 ReportQueue.FileName = FileName

 ADD(ReportQueue)

 END

 pWMFParser &= NEW WMFDocumentParser

 IF TargetSelector &= NULL THEN

 TargetSelector &= NEW

ReportTargetSelectorClass

 END

TargetSelector.AddItem(PDFReporter.IReportGene

rator)

 Previewer.AllowUserZoom=True

 Previewer.Maximize=True

Previewer.Init(ReportQueue,TargetSelector,pWMF

Parser)

 IF Previewer.Display() THEN

 OPEN(pReport)

 IF pLandscape THEN

 pReport{PROP:Landscape}=pLandscape

 END

pReport{PROP:Preview}=ReportQueue.FileName

 ENDPAGE(pReport)

 pReport{PROP:FlushPreview} = True

 ELSE

 OPEN(pReport)

pReport{PROP:Preview}=ReportQueue.FileName

 ENDPAGE(pReport)

 pReport{PROP:FlushPreview} = False

 END

 CLOSE(pReport)

 FREE(ReportQueue)

 DISPOSE(pWmfParser)

 DISPOSE(TargetSelector)

 RETURN 1

http://www.thinetsolution.com

 97

Example:

The following code is an example of how to implement a 3rd party Print Preview procedure, in this
case CPCS Reports (http://www.cpcs-inc.com/).
This code is already included in the global embeds section(PrintPreview routine) in the
NetClient.app shipped with Thin@.

Data section:

Code section:

!! Custom Print Preview Procedure Example:

!! The following code is an example of how to implement a 3rd party Print

Preview procedure, in this case CPCS Reports.

!! You can use this section to make support for your 3rd party or custom

print preview procedure, or you can uncomment the following

!! code to use the CPCS Print Preview procedure

!!***

!! CPCS Reports print preview support (uncomment to apply)

!!***

! IF SkipPreview THEN

! OPEN(pReport)

! IF pLandscape THEN

! pReport{PROP:Landscape}=pLandscape

! END

! pReport{PROP:Preview}=ReportQueue.FileName

! ENDPAGE(pReport)

! PRINTER{PROPPRINT:COPIES}=1 !Previewer.Copies

! pReport{PROPPRINT:COPIES}=1 !Previewer.Copies

! pReport{PROP:FlushPreview} = True

! Printed# = 1

! CLOSE(pReport)

! FREE(ReportQueue)

! RETURN Printed#

! ELSE

! OPEN(pReport)

! IF pLandscape THEN

! pReport{PROP:Landscape}=pLandscape

! END

! pReport{PROP:Preview}=ReportQueue.FileName

! ENDPAGE(pReport)

! PRINTER{PROPPRINT:COPIES}=1 !Previewer.Copies

! pReport{PROPPRINT:COPIES}=1 !Previewer.Copies

! PreviewOptions = BOR(PreviewOptions,10000000b)

!! --- Print preview procedure call

! Printed# =

PrintPreview(PrintPreviewQueue,100,'cpcs.ini',pReport,PreviewOptions,,,'','',

,,,,,,,,,,,,)

!! --- NOTE: This print preview procedure call is based on the procedure call

in the CPCS reports template source code

!! In order to make support for another print preview procedure, check the

procedure call in the template source, and apply changes here

! CLOSE(pReport)

! RETURN Printed#

! END

!ReportQueue QUEUE(PrintPreviewFileQueue)

http://www.cpcs-inc.com/

http://www.thinetsolution.com

 98

VII. Running a local test environment without installing the
Thin@ server

It is possible to test and run your application locally without the need to install the Thin@

application server environment.

Note that the steps covered in this chapter are not necessary for Clarion 7 and Clarion 8

environments, where the Thin@ Addin can be used instead.

Step 1:

Make a shortcut for your application

Step 2:

Right click on the shortcut icon and select Properties.

Step 3:

On the Shortcut tab, edit the Target field and add the

port parameter, as shown in the picture on the right.

Example:

C:\Program Files\School\School.exe Port=12000

This means that the application will run in the Thin@

‘hidden’ mode and that it will open only after you

start the client locally.

Step 4:

Make a NetClient shortcut.

Step 5:

Right click on the shortcut icon and select Properties.

Step 6:

On the Shortcut tab, edit the Target field and add the

port parameter, as shown in the picture on the right.

http://www.thinetsolution.com

 99

Example:

"C:\Program Files\NetClient\NetClient.exe

Servername=localhost ServerPort=12000

This means that the client will try to open the application on port 12000, using ‘localhost’ instead

of an IP or DNS address.

Step 7:

First start your application, and then start the NetClient.

Your application will now be running in your local test environment!

NOTE: The execution of these .exe files can also be done through a single .bat file which executes

both statements at once. All you have to do is to create a .bat file which first starts your

application, and then starts the NetClient.

For example:

School.bat

@start /d"C:\ Program Files\Schools\" school.exe Port=12000
@start /d"C:\ Program Files\NetClient\" NetClient.exe ServerName=localhost ServerPort=12000

http://www.thinetsolution.com

 100

VIII. Thin@ Addin (C7 & C8 only)

With the Thin@ toolbar addin you can:

1) Quickly test how your application works in Thin@-mode without configuring a Thin@

Server (and uploading the application to the Thin@ Server). This makes testing your Thin@

application in C7 and C8 quicker and simpler than with Clarion 6.

2) Access some of the most useful Thin@ resources such as documentation and other web

resources

To quickly test how your application works in Thin@-mode, all you have to do is recompile your

application with the Thin@ template and press .

This will use the default Thin@ Client to run the application, the location of which is “C:\Program

Files\Thin@ Client\Clarion7\NetClient.exe”. If you changed this path during the Client installation

you need to modify this setting and provide full path to a Thin@ Client executable.

The Thin@ Addin lets you configure up to three Thin@

Clients so that you can quickly test your application with

different versions of the Client.

By default these are the standard C7, C8 and C6 versions.

Run-In-Thin@-Mode Settings

You can modify the IDE Icon Label, the paths to the client, the port on which the application will

run, whether to kill already started application/client instances (recommended) or not and you

can pass command line startup parameters to the Thin@ application and Client.

Thin@ Toolbar Addin button

http://www.thinetsolution.com

 101

Based on the following configuration, pressing the IDE button will start the application using the

custom Thin@ Client for RPM.

http://www.thinetsolution.com

 102

IX. 3rd party products support for Thin@

Thin@ features support for a number of 3rd party products for Clarion.

This is especially important if you’re transitioning an existing Clarion application to Thin@ SaaS,
because the application probably has a number of 3rd party products.

When it comes to support for Thin@, 3rd party products can be divided into the following
categories:

 Products that work with Thin@ out-of-the-box

 Products with integrated Thin@ support

 Products supported by Thin@

 Products that do not support Thin@

3rd party products with integrated Thin@ support:

 ClarionTools

3rd party products supported by Thin@:

 Noyantis CommandBars

 Noyantis ShortcutBar

 Noyantis ChartPro

 Capesoft AnyFont

 Capesoft Insight Graphing

 Capesoft FTP

 Fomin Report Builder

 CPCS Reports

 RPM

http://www.thinetsolution.com

 103

X. Known Server-Client version compatibility issues

In case that Clarion 6.2 is used to compile the (Server-side) application and the application
contains RTF controls, the Thin@ Client compiled in Clarion 6.2 must also be used.

